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Abstract

Zero-knowledge proofs enable proving mathematical statements while maintaining the confiden-
tiality of supporting data. This can serve as a privacy-enhancing cryptographic tool in a wide
range of applications, but its usability is dependent on secure, practical and interoperable deploy-
ments. This ZKProof Community Reference — an output of the ZKProof standardization effort
— intends to serve as a reference for the development of zero-knowledge-proof technology. The
document arises from contributions by the community and for the community. It covers theoretical
aspects of definition and theory, as well as practical aspects of implementation and applications.

Keywords: cryptography; interoperability; privacy, security; standards; zero-knowledge proofs.

About this version. This is the version 0.2 of the ZKProof Community Reference. It results
from the help of many contributors, as described in the Acknowledgments, in the Version history,
and in the documentation of previous ZKProof workshops. At a 0.x version, this document should
be considered as being in an incomplete state, serving as a basis for further development. Reaching
a future stable version requires additional revision and substantial contributions.

Citing this version: ZKProof. ZKProof Community Reference. Version 0.2. Ed. by D. Benarroch,
L. T. A. N. Brandão, E. Tromer. Pub. by zkproof.org. Dec. 2019. Updated versions at https://zkproof.org

Bibtex code

@report{2019:zkproof:community-reference-0.2,
author = {ZKProof},
title = {ZKProof Community Reference},
subtitle = {Version 0.2},
year = {2019},
month = {December},
publisher = {zkproof.org},
editor = {Benarroch, Daniel and Brandão, Luís T. A. N. and Tromer, Eran},
license = {Creative Commons Attribution 4.0 International},
key = {ZKP},
addendum = {Updated versions at https://zkproof.org}
}



About this community reference

This “ZKProof Community Reference” arises within the scope of the ZKProof open initiative, which
seeks to mainstream zero-knowledge proof (ZKP) cryptography. This is an inclusive community-
driven process that focuses on interoperability and security, aiming to advance trusted specifications
for the implementation of ZKP schemes and protocols.

ZKProof holds annual workshops, attended by world-renowned cryptographers, practitioners and
industry leaders. These events are a forum for discussing new proposals, reviewing cutting edge
projects, and advancing reference material. That is the genesis of this document, which intends to
be a community-built reference for understanding and aiding the development of ZKP systems.

The following items provide guidance for the expected development process of this document, which
is open to contributions from and for the community.

Purpose. The purpose of developing the ZKProof Community Reference document is to provide,
within the principles laid out by the ZKProof charter, a reference for the development of zero-
knowledge-proof technology that is secure, practical and interoperable.

Aims. The aim of the document is to consolidate reference material developed and/or discussed in
collaborative processes during the ZKProof workshops. The document intends to be accessible to a
large audience, including the general public, the media, the industry, developers and cryptographers.

Scope. The document intends to cover material relevant for its purpose — the development of
secure, practical and interoperable technology. The document can also elaborate on introductory
concepts or works, to enable an easier understanding of more advanced techniques. When a focus
is chosen from several alternative options, the document should include a rationale describing
comparative advantages, disadvantages and applicability. However, the document does not intend
to be a thorough survey about ZKPs, and does not need to cover every conceivable scenario.

Format. To achieve its accessibility goal, and considering its wide scope, the document favors the
inclusion of: a well defined structure (e.g., chapters, sections, subsections); introductory descrip-
tions (e.g., an executive summary and one introduction per chapter); illustrative examples covering
the main concepts; enumerated recommendations and requirements; summarizing tables; glossary
of technical terms; appropriate references for presented claims and results.

Editorial methodology. The development process of this community reference is proposed to
happen in cycles of four phases:

(i) open discussion during ZKProof workshops, with corresponding annotations to serve as
reference for subsequent development;

(ii) content development, by voluntary contributors, according to a set of contribution pro-
posals and during a defined period;

(iii) integration of contributions into the document, by the editors;
(iv) public feedback about the state of the document, to be used as a basis of development in

the next cycle.

The team of editors coordinates the process, promoting transparency by means of public calls for
contributions and feedback, using editorial discretion towards the improvement of the document
quality, and enabling an easy way to identify the changes and their rationale.
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ZKProof charter

ZKProof Charter (Boston, May 10th and 11th 2018).
The goal of the ZKProof Standardization effort is to advance the use of Zero Knowledge Proof technology
by bringing together experts from industry and academia. To further the goals of the effort, we set the
following guiding principles:

• The initiative is aimed at producing documents that are open for all and free to use.
◦ As an open initiative, all content issued from the ZKProof Standards Workshop is under

Creative Commons Attribution 4.0 International license.
• We seek to represent all aspects of the technology, research and community in an inclusive manner.
• Our goal is to reach consensus where possible, and to properly represent conflicting views where

consensus was not reached.
• As an open initiative, we wish to communicate our results to the industry, the media and to the

general public, with a goal of making all voices in the event heard.
◦ Participants in the event might be photographed or filmed.
◦ We encourage you to tweet, blog and share with the hashtag #ZKProof. Our official twitter

handle is @ZKProof.
For further information, please refer to contact@zkproof.org

Editors note: The requirement of a Creative Commons license was initially within the scope of the 1st ZKProof workshop.
The section below (about intellectual property expectations) widens the scope to cover this Community reference and beyond.

Intellectual property — expectations on disclosure and licensing
ZKProof is an open initiative that seeks to promote the secure and interoperable use of zero-
knowledge proofs. To foster open development and wide adoption, it is valuable to promote tech-
nologies with open-source implementations, unencumbered by royalty-bearing patents. However,
some useful technologies may fall within the scope of patent claims. Since ZKProof seeks to
represent the technology, research and community in an inclusive manner, it is valuable to set
expectations about the disclosure of intellectual property and the handling of patent claims.

The members of the ZKProof community are hereby strongly encouraged to provide information
on known patent claims (their own and those from others) potentially applicable to the guidance,
requirements, recommendations, proposals and examples provided in ZKProof documentation, in-
cluding by disclosing known pending patent applications or any relevant unexpired patent. Partic-
ularly, such disclosure is promptly required from the patent holders, or those acting on their behalf,
as a condition for providing content contributions to the “Community Reference” and to “Propos-
als” submitted to ZKProof for consideration by the community. The ZKProof documentation will
be updated based on received disclosures about pertinent patent claims.

ZKProof aims to produce documents that are open for all and free to use. As such, the con-
tent produced for publication within the context of the ZKProof Standardization effort should be
made available under a Creative Commons Attribution 4.0 International license. Furthermore, any
technology that is promoted in said ZKProof documentation and that falls within patent claims
should be made available under licensing terms that are reasonable, and demonstrably free of unfair
discrimination, preferably allowing free open-source implementations.

Please email relevant information to editors@zkproof.org.
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Executive summary

Zero-knowledge proofs (ZKPs) are an important privacy-enhancing tool from cryptography. They
allow proving the veracity of a statement, related to confidential data, without revealing any in-
formation beyond the validity of the statement. ZKPs were initially developed by the academic
community in the 1980s, and have seen tremendous improvements since then. They are now of
practical feasibility in multiple domains of interest to the industry, and to a large community of
developers and researchers. ZKPs can have a positive impact in industries, agencies, and for per-
sonal use, by allowing privacy-preserving applications where designated private data can be made
useful to third parties, despite not being disclosed to them.

The development of this reference document aims to serve the broader community, particularly
those interested in understanding ZKP systems, making an impact in their advancement, and
using related products. This is a step towards enabling wider adoption of ZKP technology, which
may precede the establishment of future standards. However, this document is not a substitution
for research papers, technical books, or standards. It is intended to serve as a reference handbook
of introductory concepts, basic techniques, implementation suggestions and application use-cases.

ZKP systems involve at least two parties: a prover and a verifier. The goal of the prover is to
convince the verifier that a statement is true, without revealing any additional information. For
example, suppose the prover holds a birth certificate digitally signed by an authority. In order
to access some service, the prover may have to prove being at least 18 years old, that is, that
there exists a birth certificate, tied to the identify of the prover and digitally signed by a trusted
certification authority, stating a birthdate consistent with the age claim. A ZKP allows this, without
the prover having to reveal the birthdate.

This document describes important aspects of the current state of the art in ZKP security, im-
plementation, and applications. There are several use-cases and applications where ZKPs can add
value. To better assess this it is useful to benchmark implementations under several metrics, evalu-
ate tradeoffs between security and efficiency, and develop an interoperability basis. The security of
a proof system is paramount for the system users, but efficiency is also essential for user experience.

The “Security” chapter introduces the theory and terminology of ZKP systems. A ZKP system can
be described with three components: setup, prove, verify. The setup, which can be implemented
with various techniques, determines the initial state of the prover and the verifier, including private
and common elements. The prove and verify components are the algorithms followed by the prover
and verifier, respectively, possibly in an interactive manner. These algorithms are defined so as to
ensure three main security requirements: completeness, soundness, and zero-knowledge.

Completeness requires that if both prove and verify are correct, and if the statement is true, then
at the end of the interaction the prover is convinced of this fact. Soundness requires that not even
a malicious prover can convince the verifier of a false statement. Zero knowledge requires that even
a malicious verifier cannot extract any information beyond the truthfulness of the given statement.

The “Implementation” chapter focuses on devising a framework for the implementation of ZKPs,
which is important for interoperability. One important aspect to consider upfront is the represen-
tation of statements. In a ZKP protocol, the statement needs to be converted into a mathematical
object. For example, in the case of proving that an age is at least 18, the statement is equivalent to
proving that the private birthdate Y1-M1-D1 (year-month-day) satisfies a relation with the present
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date Y2-M2-D2, namely that their distance is greater than or equal to 18 years. This simple example
can be represented as a disjunction of conditions: Y2 >Y1+18, or Y2=Y1+18 ∧ M2>M1, or Y2=Y1+18 ∧
M2=M1 ∧ D2≥D1. An actual conversion suitable for ZKPs, namely for more complex statements, can
pose an implementation challenge. There are nonetheless various techniques that enable converting
a statement into a mathematical object, such as a circuit. This document gives special attention to
representations based on a Rank-1 constraint system (R1CS) and quadratic arithmetic programs
(QAP), which are adopted by several ZKP solutions in use today. Also, the document gives special
emphasis to implementations of non-interactive proof systems.

The privacy enhancement offered by ZKPs can be applied to a wide range of scenarios. The “Appli-
cations” chapter presents three use-cases that can benefit from ZKP systems: identity framework;
asset transfer; regulation compliance. In a privacy-preserving identity framework, one can for ex-
ample prove useful personal attributes, such as age and state of residency, without revealing more
detailed personal data such as birthdate and address. In an asset-transfer setting, financial institu-
tions that facilitate transactions usually require knowing the identities of the sender and receiver,
and the asset type and amount. ZKP systems enable a privacy-preserving variant where the trans-
action is performed between anonymous parties, while at the same time ensuring they and their
assets satisfy regulatory requirements. In a regulation compliance setting, ZKPs enables an auditor
to obtain proof that a process satisfies a number of requirements, without having to learn details
about how they were achieved. These use cases, as well as a wide range of many other conceivable
privacy-preserving applications, can be enabled by a common set of tools, or gadgets, for example
including commitments, signatures, encryption and circuits.

The interplay between security concepts and implementation guidelines must be balanced in the
development of secure, practical, and interoperable ZKP applications. Solutions provided by ZKP
technology must be ensured by careful security practices and realistic assumptions. This document
aims to summarize security properties and implementation techniques that help achieve these goals.
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Chapter 1. Security

1.1 Introduction

1.1.1 What is a zero-knowledge proof?

A zero-knowledge proof (ZKP) makes it possible to prove a statement is true while preserving
confidentiality of secret information [GMR89]. This makes sense when the veracity of the statement
is not obvious on its own, but the prover knows relevant secret information (or has a skill, like super-
computation ability) that enables producing a proof. The notion of secrecy is used here in the sense
of prohibited leakage, but a ZKP makes sense even if the ‘secret’ (or any portion of it) is known
apriori by the verifier(s).

There are numerous uses of ZKPs, useful for proving claims about confidential data, such as:

1. adulthood, without revealing the birth date;

2. solvency (not being bankrupt), without showing the portfolio composition;

3. ownership of an asset, without revealing or linking to past transactions;

4. validity of a chessboard configuration, without revealing the legal sequence of chess moves;

5. correctness (demonstrability) of a theorem, without revealing its mathematical proof.

Some of these claims (commonly known by the prover and verifier, and here described as informal
statements) require a substrate (called instance, also commonly known by the prover and verifier)
to support an association with the confidential information (called witness, known by the prover
and to not be leaked during the proof process). For example, the proof of solvency (the statement)
may rely on encrypted and certified bank records (the instance), and with the verifier knowing the
corresponding decryption key and plaintext (the witness) as secrets that cannot be leaked. Table 1.1
in Section 1.2 differentiates these elements across several examples. In concrete instantiations, the
exemplified ZKPs are specified by means of a more formal statement of knowledge of a witness.

A zero-knowledge proof system is a specification of how a prover and verifier can interact for the
prover to convince the verifier that the statement is true. The proof system must be complete,
sound and zero-knowledge.

• Complete: If the statement is true and both prover and verifier follow the protocol; the
verifier will accept.

• Sound: If the statement is false, and the verifier follows the protocol; the verifier will not be
convinced.

• Zero-knowledge: If the statement is true and the prover follows the protocol; the verifier
will not learn any confidential information from the interaction with the prover but the fact
the statement is true.
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Proofs vs. arguments. The theory of ZKPs distinguishes between proofs and arguments, as
related to the computational power of the prover and verifier. Proofs need to be sound even against
computationally unbounded provers, whereas arguments only need to preserve soundness against
computationally bounded provers (often defined as probabilistic polynomial time algorithms). For
simplicity, “proof” is used hereafter to designate both proofs and arguments, although there are
theoretical circumstances where the distinction can be relevant.

1.1.2 Requirements for a zero-knowledge proof system specification

A full proof system specification MUST include:

1. Precise specification of the type of statements the proof system is designed to handle

2. Construction including algorithms used by the prover and verifier

3. If applicable, description of setup the prover and verifier use

4. Precise definitions of security the proof system is intended to provide

5. A security analysis that proves the zero-knowledge proof system satisfies the security defini-
tions and a full list of any unproven assumptions that underpin security

Efficiency claims about a zero-knowledge proof system should include all relevant performance
parameters for the intended usage. Efficiency claims must be reported fairly and accurately, and if
a comparison is made to other zero-knowledge proof systems a best effort must be made to compare
apples to apples.

The remainder of the document will outline common approaches to specifying a zero-knowledge
proof system, outline some construction paradigms, and give guidelines for how to present efficiency
claims.

1.2 Terminology

Instance: Input commonly known to both prover (P) and verifier (V), and used to support the
statement of what needs to be proven. This common input may either be local to the prover–verifier
interaction, or public in the sense of being known by external parties. Notation: x. (Some scientific
articles use “instance” and “statement” interchangeably, but we distinguish between the two.)

Witness: Private input to the prover. Others may or may not know something about the witness.
Notation: w.

Relation: Specification of relationship between instances and witness. A relation can be viewed
as a set of permissible pairs (instance, witness). Notation: R.

Language: Set of instances that appear as a permissible pair in R. Notation: L.

Statement: Defined by instance and relation. Claims the instance has a witness in the relation
(which is either true or false). Notation: x ∈ L.

Security parameter: Positive integer indicating the desired security level (e.g. 128 or 256)
where higher security parameter means greater security. In most constructions, distinction is made
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between computational security parameter and statistical security parameter. Notation: k (com-
putational) or s (statistical).

Setup: The inputs given to the prover and to the verifier, apart from the instance x and the wit-
ness w. The setup of each party can be decomposed into a private component (“PrivateSetupP ” or
“PrivateSetupV ”, respectively not known to the other party) and a common component “Common-
Setup = CRS” (known by both parties), where CRS denotes a “common reference string” (required
by some zero-knowledge proof systems). Notation: setupP = (PrivateSetupP , CRS) and setupV =
(PrivateSetupV , CRS).”

For simplicity, some parameters of the setup are left implicit (possibly inside the CRS), such as the
security parameters, and auxiliary elements defining the language and relation. See more details
in Section 1.5.3. While the witness (w) and the instance (x) could be assumed as elements of the
setup of a concrete ZKP protocol execution, they are often distinguished in their own category. In
practice, the term “Setup” is often used with respect to the setup of a proof system that can then
be instantiated for multiple executions with varying instances (x) and witnesses (w).

Table 1.1 exemplifies at a high level a differentiation between the statement, the instance and the
witness elements for the initial examples mentioned in Section 1.1.1.

Table 1.1: Example scenarios for zero-knowledge proofs

#
Scenarios

Elements Statement
being proven

Instance
used as substrate

Witness
treated as confidential

1 Legal age for
purchase I am an adult Tamper-resistant

identification chip

Birthdate and personal
data (signed by a cer-
tification authority)

2 Hedge fund
solvency We are not bankrupt Encrypted & certified

bank records
Portfolio data and
decryption key

3 Asset
transfer I own this <asset> A blockchain or

other commitments

Sequence of transactions
(and secret keys that
establish ownership)

4 Chessboard
configuration

This <configuration>
can be reached (The rules of Chess) A sequence of valid

chess moves

5 Theorem
validity

This <expression>
is a theorem

(A set of axioms,
and the logical
rules of inference)

A sequence of logical
implications

1.3 Specifying Statements for ZK

This document considers types of statements defined by a relation R between instances x and
witnesses w. The relation R specifies which pairs (x,w) are considered related to each other, and
which are not related to each other. The relation defines a matching language L consisting of
instances x that have a witness w in R.

A statement is either a membership claim of the form “x ∈ L”, or a knowledge claim of the form “In
the scope of relation R, I know a witness for instance x.” For some cases, the knowledge and member-
ship types of statement can be informally considered interchangeable, but formally there are techni-
cal reasons to distinguish between the two notions. In particular, there are scenarios where a state-
ment of knowledge cannot be converted into a statement of membership, and vice-versa (as exem-
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plified in Section 1.4). The examples in this document are often based on statements of knowledge.

The relation R can for instance be specified as a program (e.g. in C or Java), which given inputs
x and w decides to accept, meaning (x,w) ∈ R, or reject, meaning w is not a witness to x ∈ L.
Examples of such specifications of the relation are detailed in the Applications track. In the
academic literature, relations are often specified either as random access memory (RAM) programs
or through Boolean and arithmetic circuits, described below.

1.3.1 Circuit representation

A circuit is a directed acyclic graph (DAG) comprised of nodes and labels for nodes, which satisfy
the following constraints:

• Nodes with in-degree 0 are referred to as the input nodes and are labeled with some constant
(e.g., 0, 1, . . .) or with input variable names (e.g., v1, v2, . . .)

• There is a single node with out-degree 0 that is referred to as the output node.

• Internal nodes are referred to as gate nodes and describe a computation performed at the
node.

Parameters. Depending on the application, various parameters may be important, for instance
the number of gates in the circuit, the number of instance variables nx, the number of witness
variables nw, the circuit depth, or the circuit width.

Boolean Circuit satisfiability. The relation R has instances of the form x = (C, v1, . . . , vnx)
and witnesses w = (w1, ..., wnw). For (x,w) to be in the relation, C must be a circuit with fan-in 2
gate nodes that are labeled with Boolean operations, e.g., XOR or AND, v1, ..., vnx must specify truth
values for some of the input nodes, and w1, ..., wnw must specify truth values for the remaining
input variables, such that when evaluating the circuit the output node becomes 1 (true).

Arithmetic Circuit satisfiability. The relation has instances of the form x = (F,C, v1, ..., vnx)
and witnesses w = (w1, ..., wnw). For (x,w) to be in the relation, F must be a finite field (e.g.,
integers modulo a prime p), C must be a circuit with gate nodes that are labeled with field oper-
ations, i.e., addition or multiplication, v1, ..., vnx must specify field elements for some of the input
nodes, and w1, ..., wnw must specify field elements for the remaining input variables, such that when
evaluating the circuit the output node becomes 1.

1.3.2 R1CS representation

A rank-1 constraint system (R1CS) is a system of equations represented by a list of triplets (⃗a, b⃗, c⃗)
of vectors of elements of some field. Each triplet defines a “constraint” as an equation of the form
(A) · (B) − (C) = 0. Each of the three elements — (A), (B), (C) — in such equation is a linear
combination (e.g., (C) = c1 · s1 + c2 · s2 + ...) of variables si of the so called solution s⃗ vector.
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R1CS satisfiability. For all triplets (⃗a, b⃗, c⃗) of vectors in the R1CS, the solution vector s⃗ must
satisfy ⟨⃗a, s⃗⟩ ·

⟨⃗
b, s⃗

⟩
− ⟨c⃗, s⃗⟩ = 0, where ⟨·, ·⟩ denotes the dot product of two vectors. The first

element of s⃗ is fixed to the constant 1 (instead of a variable), to enable encoding constants in the
constraints. The remaining elements represent several kinds of variables:

• Witness variables: known only to the prover; represent external inputs to the constraint
system — the witness of the ZK proof system.

• Internal variables: known only to the prover; internal to the constraint system (represent
the inputs and outputs of multiplication gates);

• Instance variables: known by both prover and verifier.

A R1CS does not produce an output from an input (as for example a circuit does), but can be
used to verify the correctness of a computation (e.g., performed by circuits with logic and/or
arithmetic gates). The R1CS checks that the output variables (commonly known by both prover
and verifier) are consistent with all other variables (possibly known only by the prover) in the
solution vector. R1CS is only an intermediate representation, since the actual use in a ZKP system
requires subsequent formulations (e.g., into a QAP) to enable verification without revealing the
secret variables.

A R1CS can be used to represent a Boolean circuit satisfiability problem and also to verify compu-
tations in arithmetic circuits. It is sufficient to observe that arbitrary circuits can be represented
using multiplication and linear combination of polynomials, and these in turn correspond to R1CS
constraints. For example:

• Boolean circuits operations:

– NOT operation: If x is a Boolean variable, then 1−x is the negation of x. Put differently,
if x is 0 or 1, then 1− x is respectively 1 or 1.

– AND operation: can be implemented as (A)× (B)

– XOR operation (c = a XOR b): can be implemented as (2 · a) × (b) = (a + b − c), or
equivalently as c = a+ b− (a AND b) ∗ 2

• Arithmetic circuit operations:

– Multiplication gates are directly represented as equations of the form a ∗ b = c.
– Linear constraints are used to keep track of inputs and outputs across these gates, and

to represent addition and multiplication-by-constants.

1.3.3 Types of relations

Special purpose relations: Circuit satisfiability is a complete problem within the non-deter-
ministic polynomial (NP) class, i.e., it is NP-complete, but a relation does not have to be that.
Examples of statements that appear in cryptographic usage include that a committed value falls in
a certain range [A;B] or belongs to a set S, that a ciphertext has plaintext 0 or that two ciphertexts
encrypt the same value, that the prover has a secret key associated with a set of public verification
keys for a signature scheme, etc.
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Setup-dependent relations: Sometimes it is convenient to let the relation R take an additional
input setupR, i.e., let the relation contain triples (setupR, x, w). The input setupR can be used
to specify persistent information. For example, for arithmetic circuit satisfiability, if the same
finite field F and circuit C are used many times, then setupR = (F, C) and x = (v1, ..., vnx). The
input setupR can also be used to capture trusted input the relation does not check, e.g., a trusted
Rivest–Shamir–Adleman (RSA) modulus.

1.4 ZKPs of knowledge vs. ZKPs of membership

The theory of ZKPs distinguishes between two types of proofs, based on the type of statement (and
also on the type of security properties — see Sections 1.6.2 and 1.6.3):

• A ZKP of knowledge (ZKPoK) proves the veracity of a statement of knowledge, i.e., it proves
knowledge of private data that supports the statement, without revealing the former.

• A ZKP of membership proves the veracity of a statement of membership, i.e., that the instance
belongs to the language, as related to the statement, but without revealing information that
could not have been produced by a computationally bounded verifier.

The statements exemplified in Table 1.1 were expressed as facts, but each of them corresponds to
a knowledge of a secret witness that supports the statement in the context of the instance. For
example, the statement “I am an adult” in scenario 1 can be interpreted as an abbreviation of “I
know a birthdate that is consistent with adulthood today, and I also know a certificate (signed by
some trusted certification authority) associating the birthdate with my identity.”

The first three use-cases (adulthood, solvency and asset ownership) in Table 1.1 have instances
with some kind of protection, such as physical access control, encryption, signature and/or com-
mitments. The “chessboard configuration” and the “theorem validity” use-cases are different in
that their instances do not contain any cryptographic support or physical protection. Each of
those two statements can be seen as a claim of membership, in the sense of claiming that the ex-
pression/configuration belongs respectively to the language of valid chessboard configurations (i.e.,
reachable by a sequence of moves), or the language of theorems (i.e., of provable expressions). At
the same time, a further specification of the statement can be expressed as a claim of knowledge
of a sequence of legal moves or a sequence of logical implications.

1.4.1 Example: ZKP of knowledge of a discrete logarithm (discrete-log)

Consider the classical example of proving knowledge of a discrete-log [Sch90]. Let p be a large
prime (e.g., with 4096 bits) of the form p = 2q + 1, where q is also a prime. Let g be a generator
of the group Z∗

p = {1, ..., p − 1} =
{
gi : i = 1, ..., p− 1

}
under multiplication modulo p. Assume

that it is computationally infeasible to compute discrete-logs in this group, and that the primality
of p and q has been verified by both prover and verifier. Let w be a secret element (the witness)
known by the prover, and let x = gw(mod p) be the instance known by both the prover and verifier,
corresponding to the following statement by the prover: “I know the discrete-log (base g) of the
instance (x), modulo p” (in other words: “I know a secret exponent that raises the generator (g) into
the instance (x), modulo p”). Consider now the relation R = {(x,w) : gw = x (mod p)}. In this
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case, the corresponding language L = {x : ∃w : (x,w) ∈ R} is simply the set Z∗
p = {1, 2, ..., p− 1},

for which membership is self-evident (without any knowledge of w). In that sense, a proof of
membership does not make sense (or can be trivially considered accomplished with even an empty
bit string). Conversely, whether or not the prover knows a witness is a non-trivial matter, since
the current publicly-known state of the art does not provide a way to compute discrete-logs in time
polynomial in the size of the prime modulus (except if with a quantum computer). In summary,
this is a case where a ZKPoK makes sense but a ZKP of membership does not.

1.4.2 Example: ZKP of knowledge of a hash pre-image

Consider a cryptographic hash function H : {0, 1}512 → {0, 1}256, restricted to binary inputs of
length 512. In this definition of H, the set of all 256-bit strings is the co-domain, which might be
a super-set of the image L =

{
H(x) : x ∈ {0, 1}512

}
(a.k.a. range) of H. Let w be a witness (hash

pre-image), known by the prover and unpredictable to the verifier, for some instance x = H(w)
that the prover presents to the verifier. Since a cryptographic hash function is one-way, there is
significance in providing a ZKPoK of a pre-image, which proves knowledge of a witness in the re-
lation R = {(x,w) : H(w) = x}. Such proof also constitutes directly a proof of membership in the
language L, i.e., that the instance x is a member of the image of H. However, interestingly depend-
ing on the known properties of H, this membership predicate might or might not be self-evident
from the instance x.

• If H is known to have as image the set of all bit-strings of length 256 (i.e., if L = {0, 1}256),
then membership is self-evident. In this case a ZKP of membership is superfluous, since it is
trivial to verify the property of a bit-string having 256 bits.

• H may instead have the property that an element x uniformly selected from the co-domain
{0, 1}256 is not in the image of H, with some noticeable probability (e.g., ≈0.368, if H
is modeled as a random function), and with the membership predicate being difficult to
determine. In this setting it can be useful to have the ability to perform a ZKP of membership.

1.4.3 Example: ZKP of membership for graph non-isomorphism

In the theoretical context of provers with super-polynomial computation ability (e.g., unbounded),
one can conceive a proof of membership without the notion of witness. Therefore, in this case the
dual notion of a ZKP of knowledge does not apply. A classical example uses the language of pairs
of non-isomorphic graphs [GMW91], for which the proof is about convincing a verifier that two
graphs are not isomorphic. The classical example uses an interactive proof that does not follow
from a witness, but rather from a super-ability, by the prover, in deciding isomorphism between
graphs. The verifier challenges the prover to detect which of the two graphs is isomorphic to a
random permutation of one of the two original graphs. If the prover decides correctly enough
times, without ever failing, then the verifier becomes convinced of the non-isomorphism.

This document is not focused on settings that require provers with super-polynomial ability (in an
asymptotic setting). However, this notion of ZKP of membership without witness still makes sense
in other conceivable applications, namely within a concrete setting (as opposed to asymptotic).
This may apply in contexts of proofs of work, or when provers are “supercomputers” or quantum
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computers, possibly interacting with verifiers with significantly less computational resources. An-
other conceivable setting is when a verifier wants to confirm whether the prover is able to solve a
mathematical problem, for which the prover claims to have found a first efficient technique, e.g.,
the ability to decide fast about graph isomorphism.

1.5 Syntax

A proof system (for a relation R defining a language L) is a protocol between a prover and a verifier
sending messages to each other. The prover and verifier are defined by two algorithms, here called
Prove and Verify. The algorithms Prove and Verify may be probabilistic and may keep internal
state between invocations.

1.5.1 Prove(state,m)→ (state, p)

The Prove algorithm in a given state receiving messagem, updates its state and returns a message p.

• The initial state of Prove must include an instance x and a witness w. The initial state may
also include additional setup information setupP , e.g., state = (setupP , x, w).

• If receiving a special initialization message m = start when first invoked it means the prover
is to initiate the protocol.

• If Prove outputs a special error symbol p = error, it must output error on all subsequent
calls as well.

1.5.2 Verify(state, p) → (state,m)

The Verify algorithm in a given state receiving message p, updates its state and returns a messagem.

• The initial state of Verify must include an instance x.

• The initial state of Verify may also include additional setup information setupV , e.g., state =
(setupV , x).

• If receiving a special initialization message p = start, it means the verifier is to initiate the
protocol.

• If Verify outputs a special symbol m = accept, it means the verifier accepts the proof of the
statement x ∈ L. In this case, Verify must return m = accept on all future calls.

• If Verify outputs a special symbol m = reject, it means the verifier rejects the proof of the
statement x ∈ L. In this case, Verify must return m = reject on all future calls.

The setup information setupP and setupV can take many forms. A common example found in the
cryptographic literature is that setupP = setupV = k, where k is a security parameter indicating
the desired security level of the proof system. It is also conceivable that setupP and setupV contain
descriptions of particular choices of primitives to instantiate the proof system with, e.g., to use
the SHA-256 hash function or to use a particular elliptic curve. The setup information may also
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be generated by a probabilistic process. For example: it may be that setupP and setupV include
a common reference string; or, in the case of designated-verifier proofs, setupP and setupV may
be correlated in a particular way. When we want to specifically refer to this process, we use a
probabilistic setup algorithm Setup.

1.5.3 Setup(parameters) → (setupR, setupP , setupV , auxiliary output)

The setup algorithm may take input parameters, which could for instance be computational or
statistical security parameters indicating the desired security level of the proof system, or size
parameters specifying the size of the statements the proof system should work for, or choices of
cryptographic primitives e.g. the SHA-256 hash function or an elliptic curve.

• The setup algorithm returns an input setupR for the relation the proof system is for. An
important special case is where the setupR is just the empty string, i.e., the relation is
independent of any setup.

• The setup algorithm returns setupP for the prover and setupV for the verifier.

• There may potentially be additional auxiliary outputs.

• If the inputs are malformed or any error occurs, the Setup algorithm may output an error
symbol.

Some examples of possible setups.

• NIZK proof system for 3SAT in the uniform reference string model based on trapdoor per-
mutations

– setupR = n, where n specifies the maximal number of clauses
– setupP = setupV = uniform random string of length N = size(n, k) for some function

size(n, k) of n and security parameter k

• Groth-Sahai proofs for pairing-product equations
– setupR = description of bilinear group defining the language
– setupP = setupV = common reference string including description of the bilinear group

in setupR plus additional group elements

• SNARK for QAP such as e.g. Pinocchio
– setupR = QAP specification including finite field F and polynomials
– setupP = setupV = common reference string including a bilinear group defined over the

same finite field and some group elements
The prover and verifier do not use the same group elements in the common reference
string. For efficiency reasons, one may let setupP be the subset of the group elements the
prover uses, and setupV another (much smaller) subset of group elements the verifier uses.

• Cramer-Shoup hash proof systems
– setupR = specifies finite cyclic group of prime order
– setupP = the cyclic group and some group elements
– setupV = the cyclic group and some discrete logarithms
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It depends on the concrete setting how Setup runs. In some cases, a trusted third party runs an
algorithm to generate the setup. In other cases, Setup may be a multi-party computation offering
resilience against a subset of corrupt and dishonest parties (and the auxiliary output may represent
side-information the adversarial parties learn from the MPC protocol). Yet, another possibility
is to work in the plain model, where the setup does nothing but copy a security parameter, e.g.,
setupP = setupV = k.

There are variations of proof systems, e.g., multi-prover proof systems and commit-and-prove sys-
tems; this document only covers standard systems.

Common reference string: If the setup information is public and known to everybody, we say
the proof system is in the common reference string model. The setup may for instance specify
setupR = setupP = setupV , which we then refer to as a common reference string CRS.

Non-interactive proof systems: A proof system is non-interactive if the interaction consists of
a single message from the prover to the verifier. After receiving the prover’s message p (called a
proof), the verifier then returns accept or reject.

Public verifiability vs designated verifier: If setupV is public information (e.g. in the CRS
model) known to multiple parties in a non-interactive proof system, then they can all verify a proof
p. In this case, the proof is transferable, the prover only needs to create it once after which it can
be copied and transferred to many verifiers. If on the other hand, setupV is private we refer to it
as a designated verifier proof system.

Public coin: In an interactive proof system, we say it is public coin if the verifier’s messages are
uniformly random and independent of the prover’s messages.

1.6 Definition and Properties

A proof system (Setup, Prove, Verify) for a relation R must be complete and sound. It may have
additional desirable security properties such as being a proof of knowledge or being zero knowledge.

1.6.1 Completeness

Intuitively, a proof system is complete if an honest prover with a valid witness w for a statement
x ∈ L can convince an honest verifier that the statement is true. A full specification of a proof
system must include a precise definition of completeness that captures this intuition. We give an
example of a definition below for a proof system where the prover initiates.

Consider a completeness attacker Adversary in the following experiment.

1. Run Setup(parameters) → (setupR, setupP , setupV , aux)

2. Let the adversary choose a worst case instance and witness:
Adversary(parameters, setupR, setupP , setupV , aux)→ (x,w)

3. Run the interaction between Prove and Verify until the prover returns error or the verifier
accepts or rejects. Let result be the outcome, with the convention that result = error if the
protocol does not terminate. ⟨Prove(setupP , x, w, start) ; Verify(setupV , x)⟩ → result
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• Adversary wins if (setupR, x, w) ∈ R and result is not accept.

We define the adversary’s advantage as a function of parameters to be Advantage(parameters) =
Pr[Adversary wins]

A proof system for R running on parameters is complete if nobody ever constructs an efficient
adversary with significant advantage.

It depends on the application what is an efficient adversary (computing equipment, running time,
memory consumption, usage lifetime, incentives, etc.) and how large an advantage can be tolerated.
Special strong cases include statistical completeness (aka unconditional completeness) where the
winning probability is small for any adversary, and perfect completeness, where for any adversary
the advantage is exactly 0.

1.6.2 Soundness

Intuitively, a proof system is sound if a cheating prover has little or no chance of convincing an
honest verifier that a false statement is true. A full specification of a proof system must include a
precise definition of soundness that captures this intuition. We give an example of a definition below.

Consider a soundness attacker Adversary in the following experiment.

1. Run Setup(parameters) → (setupR, setupP , setupV , aux)

2. Let the (stateful) adversary choose an instance
Adversary(parameters, setupR, setupP , setupV , aux)→ x

3. Let the adversary interact with the verifier and result be the verifier’s output (letting result =
reject if the protocol does not terminate). ⟨Adversary ; Verify(setupV , x)⟩ → result

• Adversary wins if (setupR, x) /∈ L and result is accept.

We define the adversary’s advantage as a function of parameters to be
Advantage(parameters) = Pr[Adversary wins]

A proof system for R running on parameters is sound if nobody ever constructs an efficient adversary
with significant advantage.

It depends on the application what is considered an efficient adversary (computing equipment,
running time, memory consumption, usage lifetime, etc.) and how large an advantage can be
tolerated. Special strong notions of soundness includes statistical soundness (aka unconditional
soundness) where any adversary has small chance of winning, and perfect soundness, where for any
adversary the advantage is exactly 0.

1.6.3 Proof of knowledge

Intuitively, a proof system is a proof of knowledge if it is not just sound, but that the ability to
convince an honest verifier implies that the prover must “know” a witness. To “know” a witness
can be defined as it being possible to extract a witness from a successful prover. If a proof system
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is claimed to be a proof of knowledge, then the full specification must include a precise definition
of knowledge soundness that captures this intuition, but we do not define proofs of knowledge here.

To improve. A future version of this document should include here a game definition for the
extractor required by the formal notion of proof of knowledge. This security property also arises
naturally in the ideal/real simulation paradigm, in the context of an ideal ZKP functionality that,
in the ideal world, receives the witness directly from the prover.

1.6.4 Zero knowledge

Intuitively, a proof system is zero knowledge if it does not leak any information about the prover’s
witness beyond what the attacker may already know about the witness from other sources. Zero
knowledge is defined through the specification of an efficient simulator that can generate kosher
looking proofs without access to the witness. If a proof system is claimed to be zero knowledge,
then the full specification MUST include a precise definition of zero knowledge that captures this
intuition. We give an example of a definition below.

A proof system is zero knowledge if the designers provide additional efficient algorithms SimSetup,
SimProve such that realistic attackers have small advantage in the game below. Let Adversary
be an attacker in the following experiment:

1. Choose a bit uniformly at random 0,1 → b

2. If b = 0 run Setup(parameters) → (setupR, setupP , setupV , aux)

3. Else if b = 1 run SimSetup(parameters) → (setupR, setupP , setupV , aux, trapdoor)

4. Let the (stateful) adversary choose an instance and witness
Adversary(parameters, setupR, setupP , setupV , aux)→ (x,w)

5. If (setupR, x, w) /∈ R return guess = 0

6. If b = 0 let the adversary interact with the prover and output a guess (letting guess = 0 if
the protocol does not terminate). ⟨Prove(setupP , x, w) ; Adversary⟩ → guess

7. Else if b = 1 let the adversary interact with a simulated prover and output a guess (letting
guess = 0 if the protocol does not terminate)
⟨SimProve(setupP , x, trapdoor) ; Adversary⟩ → guess

• Adversary wins if guess = b

We define the adversary’s advantage as a function of parameters to be
Advantage(parameters) = | Pr[Adversary wins] - 1/2 |

A proof system for R running on parameters is zero knowledge if nobody ever constructs an efficient
adversary with significant advantage.

It depends on the application what is considered an efficient adversary (computing equipment,
running time, memory consumption, usage lifetime, etc.) and how large an advantage can be toler-
ated. Special strong notions include statistical zero knowledge (aka unconditional zero knowledge)
where any adversary has small advantage, and perfect zero knowledge, where for any adversary the
advantage is exactly 0.
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multi-theorem zero knowledge. In the zero-knowledge definition, the adversary interacts with the
prover or simulator on a single instance. It is possible to strengthen the zero-knowledge definition
to guard also against an adversary that sees proofs for multiple instances.

Honest verifier zero knowledge. A weaker privacy notion is honest verifier zero-knowledge, where
we assume the adversary follows the protocol honestly (i.e., in steps 6 and 7 in the definition it
runs the verification algorithm). It is a common design technique to first construct an HVZK
proof system, and then use efficient standard transformations to get a proof system with full zero
knowledge.

Witness indistinguishability and witness hiding. Sometimes a weaker notion of privacy than zero
knowledge suffices. Witness-indistinguishable proof systems make it infeasible for an adversary to
distinguish which out of several possible witnesses the prover has. Witness-hiding proof systems
ensure the interaction with an honest prover does not help the adversary to compute a witness.

1.6.5 Advanced security properties

The literature describes many advanced security notions a proof system may have. These include
security under concurrent composition and nonmalleability to guard against man-in-the-middle
attacks, security against reset attacks in settings where the adversary has physical access, simula-
tion soundness and simulation extractability to assist sophisticated security proofs, and universal
composability.

Universal composability. The UC framework defines a protocol to be secure if it realizes an ideal
functionality in an arbitrary environment. We can think of an ideal zero-knowledge functionality as
taking an input (x,w) from the prover and if and only if (x,w) ∈ R it sends the message(x, accept)
to the verifier. The ideal functionality is perfectly sound, since no statement without valid witness
will be accepted, and perfectly zero knowledge, since the proof is just the message accept. A proof
system is then UC secure, if the real life execution of the system is ‘security-equivalent’ to the
execution of the ideal proof system functionality. Usually it takes more work to demonstrate a
proof system is UC secure, but on the other hand the framework offers strong security guarantees
when the proof system is composed with other cryptographic protocols.

1.6.6 Transferability vs. deniability

In the traditional notion of zero-knowledge, a ZKP system prevents the verifier from even being
able to convincingly advertise having interacted in a legitimate proof execution. In other words,
the verifier cannot transfer onto others the confidence gained about the proven statement. This
property is sometimes called deniability or non-transferability, since a prover that has interacted
as a legitimate prover in a proof is later able to plausibly deny having done so, even if the original
verifier releases the transcript publicly.

Despite deniability being often a desired property, the dual property of transferability can also be
considered a feature, and such a setting is also of interest in this document. Transferability means
that the verifier in a legitimate proof execution becomes able to convince an external party that
the corresponding statement is true. In the case of a statement of knowledge, this means being
convinced that some prover did indeed have the claimed knowledge. In some cases this can be done
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by simply sending the transcript (the verifier’s view) of the interaction (messages exchanged and
the internal state of the verifier).

For a proper security analysis of an application, it is important to characterize whether deniability
of transferability (or a nuanced version of them) is intended. This may be an important aspect of
composability with other applications.

1.6.7 Examples of setup and trust

The security definitions assume a trusted setup. There are several variations of what the setup
looks like and the level of trust placed in it.

• No setup or trustless setup. This is when no trust is required, for instance because the setup
is just a copy of a security parameter k, or because everybody can verify the setup is correct
directly.

• Uniform random string. All parties have access to a uniform random string URS = setupR=
setupP= setupV . We can distinguish between the lighter trust case where the parties just need
to get a uniformly sampled string, which they may for instance get from a trusted common
source of randomness e.g. sunspot activity, and the stronger trust case where zero-knowledge
relies on the ability to simulate the URS generation together with a simulation trapdoor.

• Common reference string. The URS model is a special case of the CRS model. But in the CRS
model it is also possible that the common setup is sampled with a non-uniform distribution,
which may exclude easy access to a trusted common source. A distinction can be made
whether the CRS has a verifiable structure, i.e., it is easy to verify it is well-formed, or
whether full trust is required.

• Designated verifier setup. If we have a setup that generates correlated setupP and setupV ,
where setupV is intended only for a designated verifier, we also need to place trust in the
setup algorithm. This is for instance the case in Cramer-Shoup public-key encryption where
a designated verifier NIZK proof is used to provide security under chosen-ciphertext attack.
Here the setup is generated as part of the key generation process, and the recipient can be
trusted to do this honestly because it is the recipient’s own interest to make the encryption
scheme secure.

• Random oracle model. The common setup describes a cryptographic hash function, e.g.,
SHA256. In the random oracle model, the hash function is heuristically assumed to act
like a random oracle that returns a random value whenever it is queried on an input not seen
before. There are theoretical examples where the random oracle model fails, exploiting the
fact that in real life the hash function is a deterministic function, but in practice the heuristic
gives good efficiency and currently no weaknesses are known for ‘natural’ proof systems.

• There are several proposals to reduce the trust in the setup such as using secure multi-party
computation to generate a CRS, using a multi-string model where there are many CRSs and
security only relies on a majority being honestly generated, and subversion resistant CRS
where zero-knowledge holds even against a maliciously generated CRS.
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1.7 Assumptions

A full specification of a proof system must state the assumptions under which it satisfies the
security definitions and demonstrate the assumptions imply the proof system has the claimed
security properties.

A security analysis may take the form of a mathematical proof by reduction, which demonstrates
that a realistic adversary gaining significant advantage against a security property, would make it
possible to construct a realistic adversary gaining significant advantage against one of the under-
pinning assumptions.

To give an example, suppose soundness relies on a collision-resistant hash function. The demon-
stration of this fact may take the form of describing a simple and efficient algorithm Reduction,
which may call a soundness attacker Adversary as a subroutine a few times. Furthermore, the
demonstration may establish that the advantage Reduction has in finding a collision is closely
related to the advantage an arbitrary Adversary has against soundness, for instance

Advantage_soundness(parameters) ≤ 8 × Advantage_collision(parameters)

Suppose the proof system is designed such that we can instantiate it with the SHA-256 hash
function as part of the parameters. If we assume the risk of an attacker with a budget of $1,000,000
finding a SHA-256 collision within 5 years is less than 2−128, then the reduction shows the risk of
an adversary with similar power breaking soundness is less than 2−125.

Cryptographic assumptions: Cryptographic assumptions, i.e. intractability assumptions, spec-
ify what the proof system designers believe a realistic attacker is incapable of computing. Sometimes
a security property may rely on no cryptographic assumptions at all, in which case we say security
of unconditional, i.e., we may for instance say a proof system has unconditional soundness or uncon-
ditional zero knowledge. Usually, either soundness or zero knowledge is based on an intractability
assumption though. The choice of assumption depends on the risk appetite of the designers and
the type of adversary they want to defend against.

Plausibility. At all costs, an intractability assumption that has been broken should not be used.
We recommend designing flexible and modular proof systems such that they can be easily updated
if an underpinning cryptographic assumption is shown to be false.

Sometimes, but not always, it is possible to establish an order of plausibility of assumptions. It is
for instance known that if you can break the discrete logarithm problem in a particular group, then
you can also break the computational Diffie-Hellman problem in the same group, but not necessarily
the other way around. This means the discrete logarithm assumption is more plausible than the
computational Diffie-Hellman assumption and therefore preferable from a security perspective.

Post-quantum resistance. There is a chance that quantum computers will be developed within a few
decades. Quantum computers are able to efficiently break some cryptographic assumptions, e.g.,
the discrete logarithm problem. If the expected lifetime of the proof system extends beyond the
emergence of quantum computers, then it is necessary to rely on intractability assumptions that are
believed to resist quantum computers. Different security properties may require different lifetimes.
For instance, it may be that proofs are verified immediately and hence post-quantum soundness is
not required, while at the same time an attacker may collect and store proof transcripts and later
try to learn something from them, so post-quantum zero knowledge is required.
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Concrete parameters. It is common in the cryptographic literature to use vague phrasing such as
“the advantage of a polynomial time adversary is negligible” when describing the theory behind a
proof system. However, concrete and precise security is needed for real-world deployment. A proof
system should therefore come with concrete parameter recommendation and a statement about the
level of security they are believed to provide.

System assumptions: Besides cryptographic assumptions, a proof system may rely on assump-
tions about the equipment or environment it works in. As an example, if the proof system relies
on a trusted setup it should be clearly stated what kind of trust is placed in.

Setup. If the prover or verifier are probabilistic, they require an entropy source to generate
randomness. Faulty pseudorandomness generation has caused vulnerabilities in other types of
cryptographic systems, so a full specification of a proof system should make explicit any assumptions
it makes about the nature or quality of its source of entropy.

1.8 Efficiency

A specification of a proof system may include claims about efficiency and if it does the units of
measurement MUST be clearly stated. Relevant metrics may include:

• Round complexity: Number of transmissions between prover and verifier. Usually mea-
sured in the number of moves, where a move is a message from one party to the other. An
important special case is that of 1-move proof systems, aka non-interactive proof systems,
where the verifier receives a proof from the prover and directly decides whether to accept or
not. Non-interactive proofs may be transferable, i.e., they can be copied, forwarded and used
to convince several verifiers.

• Communication: Total size of communication between prover and verifier. Usually mea-
sured in bits.

• Prover computation: Computational effort the prover expends over the duration of the
protocol. Sometimes measured as a count of the dominant cryptographic operations (to avoid
system dependence) and sometimes measured in seconds on a particular system (when making
concrete measurements).

• Depending on the intended usage, many other metrics may be important: memory consump-
tion, energy consumption, entropy consumption, potential for parallelisation to reduce time,
and offline/online computation trade-offs.

• Verifier computation: Computational effort the verifier expends over the duration of the
protocol.

• Setup cost: Size of setup parameters, e.g. a common reference string, and computational
cost of creating the setup.

Readers of a proof system specification may differ in the granularity they need in the efficiency
measurements. Take as an example a proof system consisting of an information theoretic core that
is then compiled with cryptographic primitives to yield the full system. An implementer will likely
want to have a detailed performance analysis of the information theoretic core as well as the cryp-
tographic compilation, since this will guide her choice of trade-offs and optimizations. A consumer
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on the other hand will likely want to have a high-level performance analysis and an apples-to-apples
comparison to competing proof systems. We therefore recommend to provide both a detailed anal-
ysis that quantifies all the dominant efficiency costs, and a bottom-line analysis that summarizes
performance for reasonable choices of parameters and identifies the optimal performance region.

1.8.1 Characterization of security properties

The benchmarking of a technique should clarify the distinct security levels achieved/conjectured
for different security properties, e.g., soundness vs. zero-knowledge. In each case, the security
type should also be clarified with respect to being unconditional, statistical or computational.
When considering computational security, it should be clarified to what extent pre-computations
may affect the security level, and whether/how known attacks may be parallelizable. All security
claims/assertions should be qualified clearly with respect to whether they are based on proven
security reductions or on heuristic conjectures. In either case the security analysis should make
clear which computational assumptions and implementation requirements are needed. It should be
made explicit whether (and how) the security levels relate to classical or quantum adversaries. When
applicable, the benchmarking should characterize the security (including possible unsuitability) of
the technique against quantum adversaries.

1.8.2 Computational security levels for benchmarking

The benchmarks for each technique shall include at least one parametrization achieving a con-
jectured computational security level κ approximately equal to, or greater than, 128 bits. Each
technique should also be benchmarked for at least one additional higher computational security
level, such as 192 or 256 bits. (If only one, the latter is preferred.) The benchmarking at more
than one level aids the understanding of how the efficiency varies with the security level. The
interest in a security level as high as 256 bits can be considered a precautious (and heuristic) safety
margin, compared for example with intended 128 bits. This is intended to handle the possibility
that the conjectured level of security is later found to have been over-estimated. The evaluation
at computational security below 128 bits may be justified for the purpose of clarifying how the
execution complexity or time varies with the security parameter, but should not be construed as a
recommendation for practical security.

An exception allowing lower computational security parameter. With utmost care, a
computational security level may be justified below 128 bits, including for benchmarking. The
following text describes as exception. In some interactive ZKPs (see Section 2.2), there may be
cryptographic properties that only need to be held during a portion of a protocol execution, which
in turn may be required to take less than a fixed amount of time, say, one minute. For example, a
commitment scheme used to enable temporary hiding during a coin-flipping protocol may only need
to hold until the other party reveals a secret value. In such case the property may be implemented
with less than 128 bits of security, under special care (namely with respect to composition in a
concurrent setting) and if the difference in efficiency is substantial. Such decreased security level
of a component of a protocol may also be useful for example to enable properties of deniability
(non-transferability).

Depending on the application, other exceptions may be acceptable, upon careful analysis, when
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the witness whose knowledge is being proven is itself discoverable from the ZK instance with less
computational resources than those corresponding to 128 bits of security.

1.8.3 Statistical security levels for benchmarking

The soundness security of certain interactive ZKP systems may be based on the ability of the
verifier(s) to validate-or-trust the freshness and entropy of a challenge (e.g., a nonce produced by
a verifier, or randomness obtained by a trusted randomness Beacon). In some of those cases, a
statistical security parameter σ (e.g., 40 or 64 bits) may be used to refer to the error probability
(e.g., 2−40 or 2−64, respectively) of a protocol with “one-shot” security, i.e., when the ability of
a malicious prover to succeed without knowledge of a valid witness requires guessing in advance
what the challenge would be. A lower statistical security parameter may be suitable if there is a
mechanism capable of detecting and preventing a repetition of failed proof attempts.

While an appropriate minimal parameter may depend on the application scenario, benchmarking
shall be done with at least one parametrization achieving a conjectured statistical security level
of at least 64 bits. Whenever the efficiency variation is substantial across variations of statistical
security parameter, it is recommended that more than one security level be benchmarked. The
cases of 40, 64, 80 and 128 bits are suggested.

For interactive techniques where the efficiency upon using 64 bits of statistical security is similar to
that of using a higher parameter similar to the computation security parameter (at least 128 bits),
then the benchmark should use at least one higher statistical parameter that enables retaining high
computational security (at least 128 bits) even if the protocol is transformed into a non-interactive
version via a Fiat-Shamir transformation or similar. In the resulting non-interactive protocols, the
prover is the sole generator of the proof, and so a malicious prover can rewind and restart an at-
tempt to generate a forged proof whenever a non-interactively produced challenge is unsuitable to
complete the forgery. Computational security remains if the expected number of needed attempts
is of the order of 2κ.
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2.1 Taxonomy of Constructions

There are many different types of zero-knowledge proof systems in the literature that offer different
tradeoffs between communication cost, computational cost, and underlying cryptographic assump-
tions. Most of these proofs can be decomposed into an “information-theoretic” zero-knowledge
proof system, sometimes referred to as a zero-knowledge probabilistically checkable proof (PCP),
and a cryptographic compiler, or crypto compiler for short, that compiles such a PCP into a zero-
knowledge proof. (Here and in the following, we will sometimes omit the term “zero-knowledge”
for brevity even though we focus on zero-knowledge proof systems by default.)

Different kinds of PCPs require different crypto compilers. The crypto compilers are needed be-
cause PCPs make unrealistic independence assumptions between values contributed by the prover
and queries made by the verifier, and also do not take into account the cost of communicating a
long proof. The main advantage of this separation is modularity: PCPs can be designed, analyzed
and optimized independently of the crypto compilers, and their security properties (soundness and
zero-knowledge) do not depend on any cryptographic assumptions. It may be beneficial to apply
different crypto compilers to the same PCP, as different crypto compilers may have incomparable
efficiency and security features (e.g., trade succinctness for better computational complexity or
post-quantum security).

PCPs can be divided into two broad categories: ones in which the verifier makes point queries,
namely reads individual symbols from a proof string, and ones where the verifier makes linear
queries that request linear combinations of field elements included in the proof string. Crypto
compilers for the former types of PCPs typically only use symmetric cryptography (a collision-
resistant hash function in their interactive variants and a random oracle in their non-interactive
variants) whereas crypto compilers for the latter type of PCPs typically use homomorphic public-
key cryptographic primitives (such as SNARK-friendly pairings).

Table 2.1 summarizes different types of PCPs and corresponding crypto compilers. The efficiency
and security features of the resulting zero-knowledge proofs depend on both the parameters of the
PCP and the features of the crypto compiler.
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Table 2.1: Different types of PCPs

Proof System Inter-
action Queries to Proof Crypto Compilers Features

Classical proof
(no zk)

No All GMW, ..., 1,2,3e
Cramer-Damgård 98, ... 1,3e

Classical PCP No Point Queries Kilian, Micali, IMS 1,2,3b
Linear PCP No Inner-product Queries IKO,[Gro10],GGPR,BCIOP 3a

IOP Yes Point Queries BCS16+ZKStarks 1,2,3b
BCS16+Ligero 1,2,3d

Linear IOP Yes Inner-product
Queries

Hyrax 1,3b/3c
vSQL 3c
vRAM [ZGKPP18] 3b

ILC Yes Matrix-vector
Queries

Bootle 16,[BCGJM18] 1,3b
Bootle 17 1,2,3d

Notation: We say that a verifier makes “point queries” to the proof Π if the verifier has access
to a proof oracle OΠ that takes as input an index i and outputs the i-th symbol Π(i) of the proof.
We say that a verifier makes “inner-product queries” to the proof Π ∈ Fm (for some finite field F)
if the proof oracle takes as input a vector q ∈ Fm and returns the value ⟨ Π, q ⟩ ∈ F. We say that
a verifier makes “matrix-vector queries” to the proof Π ∈ Fm×k if the proof oracle takes as input a
vector q ∈ Fk and returns the matrix-vector product (Π.q) ∈ Fm.

1. No trusted setup

2. Relies only on symmetric-key cryptography (e.g., collision-resistant hash functions and/or
random oracles)

3. Succinct proofs
(a) Fully succinct: Proof length independent of statement size. O(1) crypto elements (fully)
(b) Polylog succinct: Polylogarithmic number of crypto elements
(c) Depth-succinct: Depends on depth of a verification circuit representing the statement.
(d) Sqrt succinct: Proportional to square root of circuit size
(e) Non succinct: Proof length is larger than circuit size.

2.1.1 Proof Systems

Note: For all of the applications we consider, the prover must run in polynomial time, given a
statement-witness pair, and the verifier must run in (possibly randomized) polynomial time.

a. Classical Proofs: In a classical NP/MA proof, the prover sends the verifier a proof string π,
the verifier reads the entire proof π and the entire statement x, and accepts or rejects.

b. PCP (Probabilistically Checkable Proofs): In a PCP proof, the prover sends the verifier a
(possibly very long) proof string π, the verifier makes “point queries” to the proof, reads the
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entire statement x, and accepts or rejects. Relevant complexity measures for a PCP include
the verifier’s query complexity, the proof length, and the alphabet size.

c. Linear PCPs: In a linear PCP proof, the prover sends the verifier a (possibly very long)
proof string π, which lies in some vector space Fm. The verifier makes some number of linear
queries to the proof, reads the entire statement x, and accepts or rejects. Relevant complexity
measures for linear PCPs include the proof length, query complexity, field size, and the
complexity of the verifier’s decision predicate (when expressed as an arithmetic circuit).

d. IOP (Interactive Oracle Proofs): An IOP is a generalization of a PCP to the interactive set-
ting. In each round of communication, the verifier sends a challenge string ci to the prover and
the prover responds with a PCP proof πi that the verifier may query via point queries. After
several rounds of interactions, the verifier accepts or rejects. Relevant complexity measures
for IOPs are the round complexity, query complexity, and alphabet size. IOP generalizes
the notion of Interactive PCP [KR08], and coincides with the notion of Probabilistically
Checkable Interactive Proof [RRR16].

e. Linear IOP: A linear IOP is a generalization of a linear PCP to the interactive setting. (See
IOP above.) Here the prover sends in each round a proof vector πi that the verifier may query
via linear (inner-product) queries.

f. ILC (Ideal Linear Commitment): The ILC model is similar to linear IOP, except that the
prover sends in each round a proof matrix rather than proof vector, and the verifier learns the
product of the proof matrix and the query vector. This model relaxes the Linear Interactive
Proofs (LIP) model from [BCIOP13]. (That is, each ILC proof matrix may be the output of
an arbitrary function of the input and the verifier’s messages. In contrast, each LIP proof
matrix must be a linear function of the verifier’s messages.) Important complexity measures
for ILCs are the round complexity, query complexity, and dimensions of matrices.

2.1.2 Compilers: Cryptographic

a. Cramer-Damgård [CD98]: Compiles an NP proof into a zero-knowledge proof. The prover
evaluates the circuit C recognizing the relation on its statement-witness pair (x,w). The
prover commits to every wire value in the circuit and sends these commitments to the verifiers.
The prover then convinces the verifier using sigma protocols that the wire values are all
consistent with each other. The prover opens the input wires to x and thus convinces the
verifier that the circuit C(x, .) is satisfied on some witness w. The compiler uses additively
homomorphic commitments (instantiated using the discrete-log assumption, for example) and
generating or verifying the proof requires a number of public-key operations that is linear in
the size of the circuit C.

b. Kilian [Kil95] / Micali [Mic00] / IMS [IMS12]: Compiles a PCP with a small number of
queries into a succinct proof. The prover produces a PCP proof that x in L. The prover
commits to the entire PCP proof using a Merkle tree. The verifier asks the prover to open
a few positions in the proof. The prover opens these positions and uses Merkle proofs to
convince the verifier that the openings are consistent with the Merkle commitment. The
verifier accepts iff the PCP verifier accepts. The compiler can be made non-interactive in the
random oracle model via the Fiat-Shamir heuristic.
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c. GGPR [GGPR13a] / BCIOP [BCIOP13]: Compiles a linear PCP into a SNARG via a trans-
formation to LIPs. The public parameters of the SNARG are as long as the linear PCP
proof and the SNARG proof consists of a constant number of ciphertexts/commitments (if
the linear PCP has constant query complexity). In the public verification setting, this com-
piler relies on “SNARG-friendly” bilinear maps and is thus not post-quantum secure. In
the designated verifier setting, it can be made post-quantum secure via linear-only encryp-
tion [BISW17]. Generating the proof requires a number of public-key operations that grows
linearly (or quasi-linearly) in the size of the circuit recognizing the relation.

d. BCS16 [BCS16]: A generalization of the Fiat-Shamir compiler that is useful for collapsing
many-round public-coin proofs (such as IOPs) into NIZKs in the random-oracle model.

e. Hyrax [WTSTW18] and vSQL [ZGKPP17]: Give mechanisms for compiling the GKR proto-
col [GKR15] into NIZKs in the random oracle model. The techniques in these works generalize
to compile any public-coin linear IOP (without zero knowledge) into a non-interactive zero-
knowledge proof in the random-oracle model, that additionally relies on algebraic commitment
schemes. The latter are typically implemented using homomorphic public-key cryptography.

f. Bootle16 [BCCGP16]: Compiler for converting an ILC proof into a many-round succinct proof
under the discrete-log assumption. Generating and verifying the proof requires a number of
public-key operations that grows linearly with the size of the circuit recognizing the NP
relation in question.

Note: In addition to the crypto compilers described above, there are information-theoretic compilers
that convert between different types of information-theoretic objects.

2.1.3 Compilers: Information-theoretic

a. MPC-in-the-Head (IKOS [IKOS07], ZKboo [GMO16], Ligero [AHIV17]): Compiles secure
multi-party computation protocols into either (zero-knowledge) PCPs or IOPs.

b. BCIOP [BCIOP13]: Compiles quadratic arithmetic programs (QAPs) or quadratic span pro-
grams (QSPs) into linear PCPs such that resulting linear PCP has a degree-two decision
predicate. The BCIOP paper also gives a compiler for converting linear PCP into 1-round
LIP/ILC and adding zero-knowledge to linear PCP.

c. Bootle17 [BCGGHJ17]: Compiles a proof in the ILC model into an IOP. They also give an
example instantiation of the ILC proof that yields an IOP proof system with square-root
complexity.

2.2 Interactivity

Several of the proof systems described in the Taxonomy of Constructions given in Section 2.1 are
interactive, including classical interactive proofs (IPs), IOPs, and linear IOPs. This means that
the verifier sends multiple challenge messages to the prover, with the prover replying to challenge
i before receiving challenge i+ 1; soundness relies on the prover being unable to predict challenge
i+1 when it responds to challenge i. The other proof systems from the Taxonomy of Constructions
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are non-interactive, namely classical PCPs and linear PCPs. All of these proof systems can be com-
bined with cryptographic compilers to yield argument systems that may or may not be interactive,
depending on the compiler.

2.2.1 Advantages of Interactive Proof and Argument Systems

a. Efficiency and Simplicity. Interactive proof systems can be simpler or more efficient than non-
interactive ones. As an example, researchers introduced the IOP model [BCS16; RRR16],
which is interactive, in part because interactivity allowed for circumventing efficiency bottle-
necks arising in state of the art PCP constructions [BCGT13]. As another example, some
argument systems derived from IPs [WTSTW18; XZZPS19] have substantially better space
complexity for the prover (a key scalability bottleneck) than state of the art PCPs [BCGT13]
or linear PCPs [GGPR13a; Gro16].
Yet, if an interactive protocol is public coin, it can be rendered non-interactive and publicly
verifiable in most settings via the Fiat-Shamir transformation (see Section 2.1.2), often with
little loss in efficiency. This means that protocol designers have the freedom to leverage
interactivity as a “resource” to simplify protocol design, improve efficiency, weaken or remove
trusted setup, etc., and still have the option of obtaining a non-interactive argument using
the Fiat-Shamir transformation.
(Applying the Fiat-Shamir heuristic to an interactive protocol to obtain a non-interactive
argument may increase soundness error, and may transform statistical security to computa-
tional security — see Section 1.8.3. However, recent works [BCS16; CCHL+19] show that
when the transformation is applied to specific IP, IOP, and linear IOP protocols of both
practical and theoretical interest, the blowup in soundness error is only polynomial in the
number of rounds of interaction.)

b. Setup. Cryptographic compilers for linear PCPs currently require a structured reference string
(SRS) (see Section 3.6.2). Here, an SRS is a structured string that must be generated by
a trusted third party during a setup phase, and soundness requires that any trapdoor used
during this trusted setup must not be revealed. In contrast, some compilers that apply to IPs,
IOPs (as well as PCPs), and linear IPs yields arguments in which the prover and the verifier
need only access a uniform random string (URS), which can be obtained from a common
source of randomness. Such a setup is referred as transparent setup in the literature.

c. Cryptographic Primitives. Argument systems derived from IPs, IOPs, or linear IOPs also
sometimes rely on more desirable cryptographic primitives. For example, IPs themselves
are information-theoretically secure, relying on no cryptographic assumptions at all. And
in contrast to arguments derived from linear PCPs, those derived from IOPs rely only on
symmetric-key cryptographic primitives (see, e.g., [BCS16]). Finally, it has long been known
how to obtain succinct interactive arguments in the plain model based on falsifiable as-
sumptions like collision-resistant hash families [Kil95], but this is not the case for succinct
non-interactive arguments.

d. Non-transferability. In some applications, it is essential that proofs be deniable or non-
transferable (i.e., it must be impossible for a verifier to convince a third party of the validity
of the statement — see Sections 1.6.6). While these properties are not unique to interactive
protocols, interaction offers a natural way to make proofs non-transferable (for details, see
Section 2.2.3).
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e. Interactivity May Limit Adversaries’ Abilities. Interactive protocols can potentially be run
with fewer bits of security and hence be more efficient. For example, interactive settings
may allow for the enforcement of a time limit for the protocol to terminate, limiting the
runtime of attackers. Alternatively, in an interactive setting it may be possible to ensure
that adversaries only have one attempt to attack a protocol, while this will not be possible
in many non-interactive settings. See Section 1.8.2 for details.

f. Interactivity May Be Inherent to Applications. Many applications are inherently interactive.
For example, real-world networking protocols involve multiple messages just to initiate a con-
nection. In addition, zero-knowledge protocols are often combined with other cryptographic
primitives in applications (e.g., oblivious transfer). If the other primitives are interactive, then
the final cryptographic protocol will be interactive regardless of whether the zero-knowledge
protocol is non-interactive. If an application is inherently interactive, it may be reasonable to
leverage the interaction as a resource if it can render a protocol simpler, more efficient, etc.

2.2.2 Disadvantages of Interactive Proof and Argument Systems

1. Interactive protocols must occur online. In an interactive protocol, the proof cannot simply
be published or posted and checked later at the verifier’s convenience, as can be done with
non-interactive protocols.

2. Public Verifiability. Many applications require that proofs be verifiable by any party at
any time. Public verifiability may be difficult to achieve for interactive protocols. This is
because soundness of interactive protocols relies on the prover being unable to predict the
next challenge it will receive in the protocol. Unless there is a publicly trusted source of
unpredictable randomness (e.g., a randomness beacon) and a way for provers to timestamp
messages, it is not clear how any party other than the one sending the challenges can be
convinced that the challenges were properly generated, and the prover replied to challenge i
before learning challenge i+ 1. See Section 2.2.3 below for further details.

3. Network latency can make interactive protocols slow. If an interactive protocol consists of
many messages sent over a network, network latency may contribute significantly to the
total execution time of the protocol.

4. Timing or Side Channel Attacks. Because interactive protocols require the prover to send
multiple messages, there may be more vulnerability to side channel or timing attacks compared
to non-interactive protocols. Timing attacks will only affect zero-knowledge, not soundness,
for public-coin protocols, because the verifier’s messages are simply random coins, and timing
attacks should not leak information to the prover in this case. In private coin protocols, both
zero-knowledge and soundness may be affected by these attacks.

5. Concurrent Security. If an interactive protocol is not used in isolation, but is instead used
in an environment where multiple interactive protocols may be executed concurrently, then
considerable care should be taken to ensure that the protocol remains secure. See for example
[Gol13, Section 2.1] and the references therein. Issues of concurrent execution security are
greatly mitigated for non-interactive protocols [GOS06].

6. Proof Length. Currently, the zero-knowledge protocols with the shortest known proofs are
based on linear PCPs, which are non-interactive. These proofs are just a few group elements
(see Table 2.1). While (public-coin) zero-knowledge protocols based on IPs or IOPs can
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be rendered non-interactive with the Fiat-Shamir heuristic, they currently produce longer
proofs. The longer proofs may render these protocols unsuitable for some applications (e.g.,
public blockchain), but they may still be suitable for other applications (even related ones,
like enterprise blockchain applications).

2.2.3 Nuances on transferability vs. interactivity

The relation between interactivity and transferability/deniability is not without nuances. The
following paragraphs show several possible combinations.

Non-interactive and deniable. A non-interactive ZKP may be non-transferable. This may be
based for example on a setup assumption such as a local CRS that is itself deniable. In that case,
a malicious verifier cannot prove to an external party that the CRS was the one used in a real
protocol execution, leading the external party to have reasonable suspicion that the verifier may
have simulated the CRS so as to become able to simulate a protocol execution transcript, without
actual participation of a legitimate prover. Another example of non-transferability is when a ZKP
intended to prove (i) an assertion (of membership or knowledge) actually proves its disjunction
with (ii) the knowledge of the secret key of a designated verifier, for example assuming a public key
infrastructure (PKI). This suffices to convince the original verifier the initial statement (i) is true,
since the verifier knows that the prover does not actually know the secret key (ii). In other words,
a success in the interactive proof stems from the initial assertion (i) being truthful. However, for
any external party, the transcript of the proof may conceivably have been produced by the original
designated verifier, who can simply do it with the knowledge of the secret key (ii). In that sense,
the designated verifier would be unable to convince others that the transcript of a legitimate proof
was not simulated by the verifier.

Non-interactive and transferable. If transferability is intended as a feature, then a non-
interactive protocol can be achieved for example with a public (undeniable) CRS. For example,
if a CRS is generated by a trusted randomness beacon, and if soundness follows from the inability
of the prover to control the CRS, then any external party (even one not involved with the prover
at the time of proof generation) can at a later time verify that a proof transcript could have only
been generated by a legitimate prover.

Interactive and deniable. A classical example (in a standalone setting, without concurrent exe-
cutions) for obtaining the deniability property comes from interactive ZKP protocols proven secure
based on the use of rewinding. Here, deniability follows from the simulatability of transcripts for
any malicious verifier. For each interactive step, the simulator learns the challenge issued by the
possibly malicious verifier, and then rewinds to reselect the preceding message of the prover, so as
to be able to answer the subsequent challenge. Some techniques require the use of commitments
and/or trapdoors, and may enable this property even for straight-line simulation (i.e., without
rewinding), provided there is an appropriate trusted setup.

Interactive and transferable. In certain settings it is possible, even from an interactive ZKP
protocol execution, to produce a transcript that constitutes a transferable proof. Usually, trans-
ferability can be achieved when the (possibly malicious) verifier can convincingly show to external
parties that the challenges selected during a protocol execution were unpredictable at the time of
the determination of the preceding messages of the prover. The transferable proof transcript is then
composed of the messages sent by the prover and additional information from the internal state of
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a malicious verifier, including details about the generation of challenges. For example, a challenge
produced (by the verifier) as a cryptographic hash output (or as a keyed pseudo-random function)
of the previous messages may later be used to provide assurance that only a legitimate prover would
have been able to generate a valid subsequent message (response). As another example, if the inter-
active ZKP protocol is composed with a communication protocol where the prover authenticates all
sent messages (e.g., signed within a PKI, and timestamped by a trusted service), then the overall
sequence of those certified messages becomes, in the hands of the verifier, a transferable proof. Fur-
thermore, from a transferable transcript, the actual transfer can also be performed in an interactive
way: the verifier (in possession of the transcript) acts as prover in a transferable ZKP of knowledge of
a transferable transcript, thereby transferring to the external verifier a new transferable transcript.

(Non)-Transferability/Deniability of Zero-Knowledge Proofs

Off-line non-transferability (deniability) of ZK proofs. Zero-knowledge proofs are in gen-
eral interactive. Interaction is inherent without a setup. Indeed, Goldreich and Oren showed that
for non-trivial languages zero-knowledge proofs require at least 3 rounds.

The zero-knowledge property in absence of setup guarantees a property called off-line non-transfer-
ability, also known as deniability — note that a verifier could always compute an equivalent tran-
script by running the simulator. This property means that the verifier gets no evidence of having
received an accepting proof from a prover and thus has no advantage in transferring the received
proof to others.

On-line non-transferability of ZK proofs. The situation is more complicated in case of on-
line non-transferability. Indeed, in this case a malicious verifier plays with a honest prover in
a zero-knowledge proof system and at the same time the malicious verifier plays with others in
the attempt of transferring the proof that he his receiving from the prover. Non-transferability
is therefore a form of security against man-in-the-middle attacks. Security against such attacks
is typically referred to as non-malleability when the same zero-knowledge proof system is used by
the adversary to try to transfer the proof to a honest verifier. When instead different protocols
are involved as part of the activities of the adversary, some stronger notions are required to model
security under such attacks (e.g., universal composability).

Transferability of a NIZK proof: publicly verifiable ZK. The transferability of a zero-
knowledge proof could become unavoidable when some forms of setups are considered and the zero-
knowledge proof makes some crucial use of it. Indeed, notice that both in the common reference
string model and in the programmable random oracle model one can construct non-interactive
zero-knowledge proofs. Such proofs cannot be simulated by the verifier with the same setup or the
same instantiation of the random oracle. More specifically, non-interactive zero-knowledge proofs
are constructed without the contribution of any verifier, therefore they are publicly verifiable proofs
that can naturally be transferred among verifiers.

Designated-verifier NIZK proofs. With more sophisticated setups other options become pos-
sible. Consider for instance a verifier possessing a public identity implemented through a public key.
In this case the prover can compute a non-interactive zero-knowledge proof that makes crucially
use of the public key of the verifier at the point that the verifier using the corresponding secret key
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could compute an indistinguishable proof. In this case we have that the proof is a non-interactive
designated-verifier zero-knowledge proof and is non-transferable since the verifier that receives the
proof could have computed an equivalent proof by herself, therefore there is no evidence to share
with others about the fact that the proof comes from a honest prover.

Transferability of interactive ZK proofs. The use of identities implemented through public
keys can also have impact in the interactive case. Consider the case where there is no trusted
setup. In this case one can design an interactive zero-knowledge proof system that can have a
transferability flavor by exploiting the public keys of prover and verifier. Indeed, if the prover signs
the transcript, then the proof is transferable by the verifier to whoever believes that the prover is
honest.

2.3 Several construction paradigms

Zero-knowledge proof protocols can be devised within several paradigms, such as:

• Specialized protocols for specialized proofs of membership or proofs of knowledge

• Proofs based on discrete-log and/or pairings

• Probabilistic checkable proofs

• Quadratic arithmetic programs

• GKR

• Interactive oracle proofs

• MPC in the head

• Using garbled circuits
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Chapter 3. Implementation

3.1 Overview

By having a standard or framework around the implementation of ZKPs, we aim to help platforms
adapt more easily to new constructions and new schemes, that may be more suitable because of
efficiency, security or application-specific changes. Application developers and the designers of
new proof systems all want to understand the performance and security tradeoffs of different ZKP
constructions when invoked in various applications. This track focuses on building a standard
interface that application developers can use to interact with ZKP proof systems, in an effort
to improve facilitate interoperability, flexibility and performance comparison. In this first effort
to achieve such an interface, our focus is on non-interactive proof systems (NIZKs) for general
statements (NP) that use an R1CS/QAP-style constraint system representation. This includes
many, though not all, of the practical general-purpose ZKP schemes currently deployed. While
this focus allows us to define concrete formats for interoperability, we recognize that additional
constraint system representation styles (e.g., arithmetic and Boolean circuits) are in use, and are
within scope of the ongoing effort. We also aim to establish best practices for the deployment of
these proof systems in production software.

3.1.1 What this document is NOT about:

• A unique explanation of how to build ZKP applications

• An exhaustive list of the security requirements needed to build a ZKP system

• A comparison of front-end tools

• A show of preference for some use-cases or others

3.2 Backends: Cryptographic System Implementations

The backend of a ZK proof implementation is the portion of the software that contains an imple-
mentation of the low-level cryptographic protocol. It proves statements where the instance and
witness are expressed as variable assignments, and relations are expressed via low-level languages
(such as arithmetic circuits, Boolean circuits, R1CS/QAP constraint systems or arithmetic con-
straint satisfaction problems).

The backend typically consists of a concrete implementation of the ZK proof system(s) given as
pseudocode in a corresponding publication (see the Security Track document for extensive discussion
of these), along with supporting code for the requisite arithmetic operations, serialization formats,
tests, benchmarking etc.

There are numerous such backends, including implementations of many of the schemes discussed
in the Security Track. Most have originated as academic research prototypes, and are available
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as open-source projects. Since the offerings and features of backends evolve rapidly, we refer the
reader to the curated taxonomy at https://zkp.science for the latest information.

Considerations for the choice of backends include:

• ZK proof system(s) implemented by the backend, and their associated security, assumptions
and asymptotic performance (as discussed in the Security Track document)

• Concrete performance (see Benchmarks section)

• Programming language and API style (this consideration may be satisfied by adherence to
prospective ZK proof standards; see the the API and File Formats section)

• Platform support

• Availability as open source

• Active community of maintainers and users

• Correctness and robustness of the implementation (as determined, e.g., by auditing and formal
verification)

• Applications (as evidence of usability and scrutiny).

3.3 Frontends: Constraint-System Construction

The frontend of a ZK proof system implementation provides means to express statements in a
convenient language and to prove such statements in zero knowledge by compiling them into a
low-level representation and invoking a suitable ZK backend.

A frontend consists of:

• The specification of a high-level language for expressing statements.

• A compiler that converts relations expressed in the high-level language into the low-level
relations suitable for some backend(s). For example, this may produce an R1CS constraint
system.

• Instance reduction: conversion of the instance in a high-level statement to a low-level instance
(e.g., assignment to R1CS instance variables).

• Witness reduction: conversion of the witness to a high-level statement to a low-level witness
(e.g., assignment to witness variables).

• Typically, a library of ”gadgets” consisting of useful and hand-optimized building blocks for
statements.

Languages for expressing statements, which have been implemented in frontends to date include:
code library for general-purpose languages, domain-specific language, suitably-adapted general-
purpose high-level language, and assembly language for a virtual CPU.

Frontends’ compilers, as well as gadget libraries, often implement various optimizations aiming to
reduce the cost of the constraint systems (e.g., the number of constraints and variables). This in-
cludes techniques such as making use of “free linear combinations” in R1CS, using nondeterministic
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advice given in witness variables (e.g., for integer arithmetic or random-access memory), removing
redundancies, using cryptographic schemes tailored for the given algebraic settings (e.g., Pedersen
hashing on the Jubjub curve or MiMC for hash functions, RSA verification for digital signatures),
and many other techniques. See the Zcon0 Circuit Optimisation handout for further discussion.

There are many implemented frontends, including some that provide alternative ways to invoke
the same underlying backends. Most have originated as academic research prototypes, and are
available as open-source projects. Since the offerings and features of frontends evolve rapidly, we
refer the reader to the curated taxonomy at https://zkp.science for the latest information.

3.4 APIs and File Formats

Our primary goal is to improve interoperability between proving systems and frontend consumers
of proving system implementations. We focused on two approaches for building standard interfaces
for implementations:

1. We aim to develop a common API for proving systems to expose their capabilities to frontends
in a way that is maximally agnostic to the underlying implementation details.

2. We aim to develop a file format for encoding a popular form of constraint systems (namely
R1CS), and its assignments, so that proving system implementations and frontends can in-
teract across language and API barriers.

We did not aim to develop standards for interoperability between backends implementing the same
(abstract) scheme, such as serialization formats for proofs (see the Extended Constraint-System
Interoperability section for further discussion).

3.4.1 Generic API

In order to help compare the performance and usability tradeoffs of proving system implemen-
tations, frontend application developers may wish to interact with the underlying proof systems
via a generic interface, so that proving systems can be swapped out and the tradeoffs observed in
practice. This also helps in an academic pursuit of analysis and comparison.

The abstract parties and objects in a NIZK are depicted in Figure 3.1.
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Language Gen pp Prover Proof

pp pp

Witness

Instance

Figure 3.1. Abstract parties and objects in a NIZK

We did not complete a generic API design for proving systems, but we did survey numerous tradeoffs
and design approaches for such an API that may be of future value.

We separate the APIs and interfaces between the universal and non-universal NIZK setting. In
the universal setting, the NIZK’s CRS generation is independent of the relation (i.e., one CRS
enables proving any NP statement). In the non-universal settings, the CRS generation depends on
the relation (represented as a constraint system), and a given CRS enables proving the statements
corresponding to any instance with respect to the specific relation.

Table 3.1: APIs and interfaces by types of universality and preprocessing

Preprocessing
(Generate has superpoly-
logarithmic runtime / output
size as function of constraint
system size)

Non-preprocessing
(Generate runtime and output
size is fast and CRS is at most
polylogarithmic in constraint sys-
tem size)

Non-universal
(Generate needs con-
straint system as input)

QAP-based [PHGR13],
[GGPR13b], [BCGTV13]

?

Universal
(Generate needs just a
size bound)

vnTinyRAM, vRAM, Bullet-
proofs (with explicit CRH)

Bulletproofs (with PRG-based
CRH generation)
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Universal and scalable
(Generate needs nothing
but security parameter)

(impossible) “Fully scalable” SNARKs based
on PCD (recursive composition)

In any case, we identified several capabilities that proving systems may need to express via a generic
interface:

1. The creation of CRS objects in the form of proving and verifying parameters, given the input
language or size bound.

2. The serialization of CRS objects into concrete encodings.

3. Metadata about the proving system such as the size and characteristic of the field (for arith-
metic constraints).

4. Witness objects containing private inputs known only to the prover, and Instance objects
containing public inputs known to the prover and verifier.

5. The creation of Proof objects when supplied proving parameters, an Instance, and a Witness.

6. The verification of Proof objects given verifying parameters and an Instance.

Future work: We would like to see a concrete API design which leverages our tentative model,
with additional work to encode concepts such as recursive composition and the batching of proving
and verification operations.

3.4.2 R1CS File Format

There are many frontends for constructing constraint systems, and many backends which consume
constraint systems (and variable assignments) to create or verify proofs. We focused on creating a
file format that frontends and backends can use to communicate constraint systems and variable
assignments. Goals include simplicity, ease of implementation, compactness and avoiding hard-
coded limits.

Our initial work focuses on R1CS due to its popularity and familiarity. Refer to the Security
Track document for more information about constraint systems. The design we arrived at is
tentative and requires further iteration. Implementation and specification work will appear at
https://github.com/zkpstandard/file_formats.

R1CS (Rank 1 Constraint Systems) is an NP-complete language for specifying relations as a sys-
tem of bilinear constraints (i.e., a rank 1 quadratic constraint system), as defined in [BCGTV13,
Appendix E in extended version]; this is a more intuitive reformulation of QAP QAP (Quadratic
Arithmetic Program), defined in [PHGR13]. R1CS is the native constraint system language of many
ZK proof constructions (see the Security Track document), including many ZK proof applications
in operational deployment.

Our proposed format makes heavy use of variable-length integers which are prevalent in the (space-
efficient) encoding of an R1CS. We refer to VarInt as a variable-length unsigned integer, and
SignedVarInt as a variable-length signed integer. We typically use VarInt for lengths or version
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numbers, and SignedVarInt for field element constants. The actual description of a VarInt is not
yet specified.

We’ll be working with primitive variable indices of the following form:

ConstantVar ← SignedVarInt(0)
InstanceVar(i) ← SignedVarInt(-(i + 1))
WitnessVar(i) ← SignedVarInt(i + 1)
VariableIndex ← ConstantVar / InstanceVar(i) / WitnessVar(i)

ConstantVar represents an indexed constant in the field, usually assigned to one. InstanceVar
represents an indexed variable of the instance, or the public input, serialized with negative indices.
WitnessVar represents an indexed variable of the witness, or the private/auxiliary input, serialized
with positive indices. VariableIndex represents one of any of these possible variable indices.

We’ll also be working with primitive expressions of the following form:

Coefficient ← SignedVarInt
Sequence(Entry) ← | length: VarInt | length * Entry |
LinearCombination ← Sequence(| VariableIndex | Coefficient |)

• Coefficients must be non-zero.

• Entries should be sorted by type, then by index:
– | ConstantVar | sorted(InstanceVar) | sorted(WitnessVar) |

Constraint ←
| A: LinearCombination | B: LinearCombination | C: LinearCombination |

We represent a Coefficient (a constant in a linear combination) with a SignedVarInt. (TODO: there
is no constraint on its canonical form.) These should never be zero. We express a LinearCombi-
nation as sequences of VariableIndex and Coefficient pairs. Linear combinations should be sorted
by type and then by index of the VariableIndex; i.e., ConstantVar should appear first, InstanceVar
should appear second (ascending) and WitnessVar should appear last (ascending).

We express constraints as three LinearCombination objects A, B, C, where the encoded constraint
represents A * B = C.

The file format will contain a header with details about the constraint system that are important
for the backend implementation or for parsing.

Header(version, vals) ←
| version: VarInt | vals: Sequence(SignedVarInt) |

The vals component of the Header will contain information such as:

• P ← Field characteristic

• D ← Degree of extension

• N_X ← Number of instance variables

• N_W ← Number of witness variables

The representation of elements of extension fields is not currently specified, so D should be 1.
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The file format contains a magic byte sequence “R1CSstmt”, a header, and a sequence of constraints,
as follows:

R1CSFile ←
| "R1CSstmt" | Header(0, [ P, D, N_X, N_W, … ]) | Sequence(Constraint) |

Further values in the header are undefined in this specification for version 0, and should be ignored.
The file extension “.r1cs” is used for R1CS circuits.

Further work: We wish to have a format for expressing the assignments for use by the backend
in generating the proof. We reserve the magic “R1CSasig” and the file extention “.assignments”
for this purpose. We also wish to have a format for expressing symbol tables for debugging. We
reserve the magic “R1CSsymb” and the file extention “.r1cssym” for this purpose.

In the future we also wish to specify other kinds of constraint systems and languages that some
proving systems can more naturally consume.

3.5 Benchmarks

As the variety of zero-knowledge proof systems and the complexity of applications has grown, it
has become more and more difficult for users to understand which proof system is the best for their
application. Part of the reason is that the tradeoff space is high-dimensional. Another reason is
the lack of good, unified benchmarking guidelines. We aim to define benchmarking procedures that
both allow fair and unbiased comparisons to prior work and also aim to give enough freedom such
that scientists are incentivized to explore the whole tradeoff space and set nuanced benchmarks in
new scenarios and thus enable more applications.
The benchmark standardisation is meant to document best practices, not hard requirements. They
are especially recommended for new general-purpose proof systems as well as implementations
of existing schemes. Additionally the long-term goal is to enable independent benchmarking on
standardized hardware.

3.5.1 What metrics and components to measure

We recommend that as the primary metrics the running time (single-threaded) and the com-
munication complexity (proof size, in the case of non-interactive proof systems) of all compo-
nents should be measured and reported for any benchmark. The measured components should
at least include the prover and the verifier. If the setup is significant then this should also be
measured, further system components like parameter loading and number of rounds (for interactive
proof systems) are suggested.

The following metrics are additionally suggested:

• Parallelizability

• Batching

• Memory consumption (either as a precise measurement or as an upper bound)

• Operation counts (e.g., number of field operations, multi-exponentiations, FFTs and their
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sizes)

• Disk usage/Storage requirement

• Crossover point: point where verifying is faster than running the computation

• Largest instance that can be handled on a given system

• Witness generation (this depends on the higher-level compiler and application)

• Tradeoffs between any of the metrics.

3.5.2 How to run the benchmarks

Benchmarks can be both of analytical and computational nature. Depending on the system either
may be more appropriate or they can supplement each other. An analytical benchmark consists of
asymptotic analysis as well as concrete formulas for certain metrics (e.g. the proof size). Ideally
analytical benchmarks are parameterized by a security level or otherwise they should report the
security level for which the benchmark is done, along with the assumptions that are being used.

Computational benchmarks should be run on a consistent and commercially available machine.
The use of cloud providers is encouraged, as this allows for cheap reproducibility. The machine
specification should be reported along with additional restrictions that are put on it (e.g. throt-
tling, number of threads, memory supplied). Benchmarking machines should generally fall into
one of the following categories and the machine description should indicate the category. If the
software implementation makes certain architectural assumptions (such as use of special hardware
instructions) then this should be clearly indicated.

• Battery powered mobile devices

• Personal computers such as laptops

• Server style machines with many cores and large memories

• Server clusters using multiple machines

• Custom hardware (should not be used to compare to software implementations)

We recommend that most runs are executed on a single-threaded machine, with parallelizability
being an optional metric to measure. The benchmarks should be obtained preferably for more than
one security level, following the recommendations stated in Sections 1.8.2 and 1.8.3.

In order to enable better comparisons we recommend that the metrics of other proof systems/
implementations are also run on the same machine and reported. The onus is on the library
developer to provide a simple way to run any instance on which a benchmark is reported. This
will additionally aid the reproducibility of results. Links to implementations will be gathered at
zkp.science and library developers are encouraged to ensure that their library is properly referenced.
Further we encourage scientific publishing venues to require the submission of source code if an
implementation is reported. Ideally these venues even test the reproducibility and indicate whether
results could be reproduced.
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3.5.3 What benchmarks to run

We propose a set of benchmarks that is informed by current applications of zero-knowledge proofs,
as well as by differences in proving systems. This list in no way complete and should be amended
and updated as new applications emerge and new systems with novel properties are developed.
Zero-knowledge proof systems can be used in a black-box manner on an existing application, but
often designing the application with a proof system in mind can yield large efficiency gains. To
cover both scenarios we suggest a set of benchmarks that include commonly used primitives (e.g.
SHA-256) and one where only the functionality is specified but not the primitives (e.g. a collision-
resistant hash function at 128-bit classical security).

Commonly used primitives. Here we list a set of primitives that both serve as microbench-
marks and are of separate interest. Library developers are free to choose how their library runs a
given primitive, but we will aid the process by providing circuit descriptions in commonly used file
formats (e.g. R1CS).

Recommended:

1. SHA-256

2. AES

3. A simple vector or matrix product at different sizes

Further suggestions:

- Zcash Sapling “spend” relation

- RC4 (for RAM memory access)

- Scrypt

- TinyRAM running for n steps with memory size s

- Number theoretic transform (coefficients to points): Small fields; Big fields; Pattern matching.

Repetition:

• The above relations, parallelized by putting n copies in parallel.

Functionalities. The following are examples of cryptographic functionalities that are especially
interesting to application developers. The realization of the primitive may be secondary, as long
as it achieves the security properties. It is helpful to provide benchmarks for a constraint-system
implementation of a realization of these primitives that is tailored for the NIZK backend.

In all of the following, the primitive underlying the ZKP statement should be given at a level of
128 bits or higher and match the security of the NIZK proof system.

• Asymmetric cryptography
- Signature verification
- Public key encryption
- Diffie Hellman key exchange over any group with 128 bit security
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• Symmetric & Hash
- Collision-resistant hash function on a 1024-byte message
- Set membership in a set of size 220 (e.g., using Merkle authentication tree)
- MAC
- AEAD

• The scheme’s own verification circuit, with matching parameters, for recursive composition
(Proof-Carrying Data)

• Range proofs [Freely chosen commitment scheme]
- Proof that number is in [0, 264)

- Proof that number is positive

• Proof of permutation (proving that two committed lists contain the same elements)

3.6 Correctness and Trust

In this section we explore the requirements for making the implementation of the proof system
trustworthy. Even if the mathematical scheme fulfills the claimed properties (e.g., it is proven
secure in the requisite sense, its assumptions hold and security parameters are chosen judiciously),
many things can go wrong in the subsequent implementation: code bugs, structured reference
string subversion, compromise during deployment, side channels, tampering attacks, etc. This
section aims to highlight such risks and offer considerations for practitioners.

3.6.1 Considerations

Design of high-level protocol and statement. The specification of the high-level protocol
that invokes the ZK proof system (and in particular, the NP statement to be proven in zero
knowledge) may fail to achieve the intended domain-specific security properties.

Methodology for specifying and verifying these protocols is at its infancy, and in practice often relies
on manual review and proof sketches. Possible methods for attaining assurance include reliance on
peer-reviewed academic publications (e.g., Zerocash [BCGG+14] and Cinderella [DFKP16]) reuse of
high-level gadgets as discussed in the Applications Track, careful manual specification and proving
of protocol properties by trained cryptographers, and emerging tools for formal verification.

Whenever nontrivial optimizations are applied to a statement, such as algebraic simplification, or
replacement of an algorithm used in the original intended statement with a more efficient alternative,
those optimizations should be supported by proofs at an appropriate level of formality.

See the Applications Track document for further discussion.

Choice of cryptographic primitives. Traditional cryptographic primitives (hash functions,
PRFs, etc.) in common use are generally not designed for efficiency when implemented in circuits
for ZK proof systems. Within the past few years, alternative ”circuit-friendly” primitives have
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been proposed that may have efficiency advantages in this setting (e.g., LowMC and MiMC). We
recommend a conservative approach to assessing the security of such primitives, and advise that
the criteria for accepting them need to be as stringent as for the more traditional primitives.

Implementation of statement. The concrete implementation of the statement to be proven
by the ZK proof system (e.g., as a Boolean circuit or an R1CS) may fail to capture the high-level
specification. This risk increases if the statement is implemented in a low abstraction level, which
is more prone to errors and harder to reason about.

The use of higher-level specifications and domain-specific languages (see the Front Ends section)
can decrease the risk of this error, though errors may still occur in the higher-level specifications
or in the compilation process.

Additionally, risk of errors often arises in the context of optimizations that aim to reduce the size
of the statement (e.g., circuit size or number of R1CS constraints).

Note that correct statement semantics is crucial for security. Two implementations that use the
same high-level protocol, same constraint system and compatible backends may still fail to correctly
interoperate if their instance reductions (from high-level statement to the low-level input required
by the backend) are incompatible – both in completeness (proofs don’t verify) or soundness (causing
false but convincing proofs, implying a security vulnerability).

Side channels. Developers should be aware of the different processes in which side channel
attacks can be detrimental and take measure to minimize the side channels. These include:

- SRS generation — in some schemes, randomly sampled elements which are discarded can be
used, if exposed, to subvert the soundness of the system.

- Assignment generation / proving — the private auxiliary data can be exposed, which allows
the attacker to understand the secret data used for the proof.

Auditing. First of all, circuit designers should provide a high-level description of their circuit
and statement alongside the low-level circuit, and explain the connections between them.

The high-level description should facilitate auditing of the security properties of the protocol being
implemented, and whether these match the properties intended by the designers or that are likely
to be expected by users.

If the low-level description is not expressed directly in code, then the correspondence between
the code and the description should be clear enough to be checked in the auditing process, either
manually or with tool support.

A major focus of auditing the correctness and security of a circuit implementation will be in verifying
that the low-level description matches the high-level one. This has several aspects, corresponding
to the security properties of a ZK proof system:

• An instance for the low-level circuit must reveal no more information than an instance for the
high-level statement. This is most easily achieved by ensuring that it is a canonical encoding
of the high-level instance.
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• It must not be possible to find an instance and witness for the low-level circuit that does not
correspond to an instance and witness for the high-level statement.

At all levels of abstraction, it is beneficial to use types to clarify the domains and representations
of the values being manipulated. Typically, a given proving system will not be able to *directly*
represent all of the types of value needed for a given high-level statement; instead, the values will
be encoded, for example as field elements in the case of R1CS-based proof systems. The available
operations on these elements may differ from those on the values they are representing; for instance,
field addition does not correspond to integer addition in the case of overflow.

An adversary who is attempting to prove an instance of the statement that was not intended to be
provable, is not necessarily constrained to using instance and witness variables that correspond to
these intended representations. Therefore, close attention is needed to ensuring that the constraint
system explicitly excludes unintended representations.

There is a wide space of design tradeoffs in how the frontend to a proof system can help to address
this issue. The frontend may provide a rich set of types suitable for directly expressing high-level
statements; it may provide only field elements, leaving representation issues to the frontend user;
it may provide abstraction mechanisms by which users can define new types; etc. Auditability of
statements expressed using the frontend should be a major consideration in this design choice.

If the frontend takes a ”gadget” approach to composition of statement elements, then it must be
clear whether each gadget is responsible for constraining the input and/or output variables to their
required types.

Testing. Methods to test constraint systems include:

- Testing for failure - does the implementation accept an assignment that should not be ac-
cepted?

- Fuzzing the circuit inputs.

- Finding missing constraints - e.g., missing boolean constraints on variables that represent
bits, or other missing type constraints.

- Finding dead constraints, and reporting them (instead of optimising out).

- Detection of unintended nondeterminism. For instance, given a partial fixed assignment, solve
for the remainder and check that there is only one solution.

A proof system implementation can support testing by providing access, for test and debugging
purposes, to the reason why a given assignment failed to satisfy the constraints. It should also
support injection of values for instance and witness variables that would not occur in normal use
(e.g. because they do not represent a value of the correct type). These features facilitate “white
box testing”, i.e. testing that the circuit implementation rejects an instance and witness for the
intended reason, rather than incidentally. Without this support, it is difficult to write correct tests
with adequate coverage of failure modes.
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3.6.2 SRS Generation

A prominent trust issue arises in proving systems which require a parameter setup process (struc-
tured reference string) that involves secret randomness. These may have to deal with scenarios
where the process is vulnerable or expensive to perform security. We explore the real world so-
cial and technical problems that these setups must confront, such as air gaps, public verifiability,
scalability, handing aborts, and the reputation of participants, and randomness beacons.

ZKP schemes require a URS (uniform reference string) or SRS (structured reference string) for their
soundness and/or ZK properties. This necessitates suitable randomness sources and, in the case of
a common reference string, a securely-executed setup algorithm. Moreover, some of the protocols
create reference strings that can be reused across applications. We thus seek considerations for
executing the setup phase of the leading ZKP scheme families, and for sharing of common resources.
This section summarizes an open discussion made by the participants of the Implementation Track,
aiming to provide considerations for practitioners to securely generate a CRS.

SRS subversion and failure modes. Constructing the SRS in a single machine might fit some
scenarios. For example, this includes a scenario where the verifier is a single entity — the one
who generates the SRS. In that scenario, an aspect that should be considered is subversion zero-
knowledge — a property of proving schemes allowing to maintain zero-knowledge, even if the SRS
is chosen maliciously by the verifier.

Strategies for subversion zero knowledge include:

- Using a multi-party computation to generate the SRS

- Adaptation of either [Gro16] [PHGR13]

- Updatable SRS - the SRS is generated once in a secure manner, and can then be specialized
to many different circuits, without the need to re-generate the SRS

There are other subversion considerations which are discussed in the ZKProof Security Track.

SRS generation using MPC In order to reduce the need of trust in a single entity generating
the SRS, it is possible to use a multi-party computation to generate the SRS. This method should
ideally be secure as long as one participant is honest (per independent computation phase). Some
considerations to strengthen the security of the MPC include:

- Have as many participants as possible
– Diversity of participants; reduce the chance they will collude
– Diversity of implementations (curve, MPC code, compiler, operating system, language)
– Diversity of hardware (CPU architecture, peripherals, RAM)

- One-time-use computers
- GCP / EC2 (leveraging enterprise security)

– If you are concerned about your hardware being compromised, then avoid side channels
(power, audio/radio, surveillance)

- Hardware removal:

41



Section 3.6 Correctness and Trust

- Remove WiFi/Bluetooth chip
- Disconnect webcam / microphone / speakers
- Remove hard disks if not needed, or disable swap

- Air gaps
– Deterministic compilation
– Append-only logs
– Public verifiability of transcripts
– Scalability
– Handling aborts
– Reputation

- Information extraction from the hardware is difficult
- Flash drives with hardware read-only toggle

Some protocols (e.g., Powers of Tau) also require sampling unpredictable public randomness. Such
randomness can be harnessed from proof of work blockchains or other sources of entropy such
as stock markets. Verifiable Delay Functions can further reduce the ability to bias these sources
[BBBF18]

SRS reusability For schemes that require an SRS, it may be possible to design an SRS generation
process that allows the re-usability of a part of the SRS, thus reducing the attack surface. A good
example of it is the Powers of Tau method for the Groth16 construction, where most of the SRS
can be reused before specializing to a specific constraint system.

Designated-verifier setting There are cases where the verifier is a known-in-advance single
entity. There are schemes that excel in this setting. Moreover, schemes with public verifiability
can be specialized to this setting as well.

3.6.3 Contingency plans

We would like to explore in future workshops the notion of contingency plans. For example, how
do we cope:

- With our proof system being compromised?

- With our specific circuit having a bug?

- When our ZKP protocol has been breached (identifying proofs with invalid witness, etc)

Some ideas that were discussed and can be expanded on are:

- Scheme-agility and protocol-agility in protocols - when designing the system, allow flexibility
for the primitives used

- Combiners (using multiple proof systems in parallel) - to reduce the reliance on a single proof
system, use multiple
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- Discuss ways to identify when ZKP protocol has been breached (identifying proofs with invalid
witness, etc)

3.7 Extended Constraint-System Interoperability

The following are stronger forms of interoperability which have been identified as desirable by
practitioners, and are to be addressed by the ongoing standardization effort.

3.7.1 Statement and witness formats

In the R1CS File Format section and associated resources, we define a file format for R1CS con-
straint systems. There remains to finalize this specification, including instances and witnesses. This
will enable users to have their choice of frameworks (frontends and backends) and streaming for
storage and communication, and facilitate creation of benchmark test cases that could be executed
by any backend accepting these formats.

Crucially, analogous formats are desired for constraint system languages other than R1CS.

3.7.2 Statement semantics, variable representation & mapping

Beyond the above, there’s a need for different implementations to coordinate the semantics of the
statement (instance) representation of constraint systems. For example, a high-level protocol may
have an RSA signature as part of the statement, leaving ambiguity on how big integers modulo a
constant are represented as a sequence of variables over a smaller field, and at what indices these
variables are placed in the actual R1CS instance.

Precise specification of statement semantics, in terms of higher-level abstraction, is needed for
interoperability of constraint systems that are invoked by several different implementations of the
instance reduction (from high-level statement to the actual input required by the ZKP prover and
verifier). One may go further and try to reuse the actual implementation of the instance reduction,
taking a high-level and possibly domain-specific representation of values (e.g., big integers) and
converting it into low-level variables. This raises questions of language and platform incompatibility,
as well as proper modularization and packaging.

Note that correct statement semantics is crucial for security. Two implementations that use the
same high-level protocol, same constraint system and compatible backends may still fail to cor-
rectly interoperate if their instance reductions are incompatible – both in completeness (proofs
don’t verify) or soundness (causing false but convincing proofs, implying a security vulnerability).
Moreover, semantics are a requisite for verification and helpful for debugging.

Some backends can exploit uniformity or regularity in the constraint system (e.g., repeating patterns
or algebraic structure), and could thus take advantage of formats and semantics that convey the
requisite information.

At the typical complexity level of today’s constraint systems, it is often acceptable to handle all of
the above manually, by fresh re-implementation based on informal specifications and inspection of
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prior implementation. We expect this to become less tenable and more error prone as application
complexity grows.

3.7.3 Witness reduction

Similar considerations arise for the witness reduction, converting a high-level witness representation
(for a given statement) into the assignment to witness variables. For example, a high-level protocol
may use Merkle trees of particular depth with a particular hash function, and a high-level instance
may include a Merkle authentication path. The witness reduction would need to convert these
into witness variables, that contain all of the Merkle authentication path data (encoded by some
particular convention into field elements and assigned in some particular order) and moreover the
numerous additional witness variables that occur in the constraints that evaluate the hash function,
ensure consistency and Booleanity, etc.

The witness reduction is highly dependent on the particular implementation of the constraint
system. Possible approaches to interoperability are, as above: formal specifications, code reuse and
manual ad hoc compatibility.

3.7.4 Gadgets interoperability

At a finer grain than monolithic constraint systems and their assignments, there is need for sharing
subcircuits and gadgets. For example, libsnark offers a rich library of highly optimized R1CS
gadgets, which developers of several front-end compilers would like to reuse in the context of their
own constraint-system construction framework.

While porting chunks of constraints across frameworks is relatively straightforward, there are chal-
lenges in coordinating the semantics of the externally-visible variables of the gadget, analogous
to but more difficult than those mentioned above for full constraint systems: there is a need to
coordinate or reuse the semantics of a gadget’s externally-visible variables, as well as to coordinate
or reuse the witness reduction function of imported gadgets in order to converts a witness into an
assignment to the internal variables.

As for instance semantics, well-defined gadget semantics is crucial for soundness, completeness and
verification, and is helpful for debugging.

3.7.5 Procedural interoperability

An attractive approach to the aforementioned needs for instance and witness reductions (both at
the level of whole constraint systems and at the gadget level) is to enable one implementation
to invoke the instance/witness reductions of another, even across frameworks and programming
languages.

This requires communication not of mere data, but invocation of procedural code. Suggested ap-
proaches to this include linking against executable code (e.g., .so files or .dll), using some elegant
and portable high-level language with its associated portable, or using a low-level portable exe-
cutable format such as WebAssembly. All of these require suitable calling conventions (e.g., how
are field elements represented?), usage guidelines and examples.
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Beyond interoperability, some low-level building blocks (e.g., finite field and elliptic curve arith-
metic) are needed by many or all implementations, and suitable libraries can be reused. To a large
extent this is already happening, using the standard practices for code reuse using native libraries.
Such reused libraries may offer a convenient common ground for consistent calling conventions as
well.

3.7.6 Proof interoperability

Another desired goal is interoperability between provers and verifiers that come from different
implementations, i.e., being able to independently write verifiers that make consistent decisions
and being able to re-implement provers while still producing proofs that convince the old verifier.

This is especially pertinent in applications where proofs are posted publicly, such as in the context
of blockchains (see the Applications Track document), and multiple independent implementations
are desired for both provers and verifiers.

To achieve such interoperability, provers and verifiers must agree on all of the following:

• ZK proof system (including fixing all degrees of freedom, such as choice of finite fields and
elliptic curves)

• Instance and witness formats (see above subsection)

• Prover parameters formats

• Verifier parameters formats

• Proof formats

• A precise specification of the constraint system (e.g., R1CS) and corresponding instance and
witness reductions (see above subsection).

Alternatively: a precise high-level specification along with a precisely-specified, deterministic fron-
tend compilation.

3.7.7 Common reference strings

There is also a need for standardization regarding Common Reference String (CRS), i.e., prover
parameters and verifier parameters. First, interoperability is needed for streaming formats (com-
munication and storage), and would allow application developers to easily switch between different
implementations, with different security and performance properties, to suit their need. Moreover,
for Structured Reference Strings (SRS), there are nontrivial semantics that depend on the ZK proof
system and its concrete realization by backends, as well as potential for partial reuse of SRS across
different circuits in some schemes (e.g., the Powers of Tau protocol).
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3.8 Future goals

3.8.1 Interoperability

Many additional aspects of interoperability remain to be analyzed and supported by standards,
to support additional ZK proof system backends as well as additional communication and reuse
scenarios. Work has begun on multiple fronts both, and a dedicated public mailing list is established.

Additional forms of interoperability. As discussed in the Extended Constraint-System Inter-
operability section above, even within the R1CS realm, there are numerous additional needs beyond
plain constraint systems and assignment representations. These affect security, functionality and
ease of development and reuse.

Additional relation styles. The R1CS-style constraint system has been given the most focus
in the Implementation Track discussions in the first workshop, leading to a file format and an
API specification suitable for it. It is an important goal to discuss other styles of constraint
systems, which are used by other ZK proof systems and their corresponding backends. This includes
arithmetic and Boolean circuits, variants thereof which can exploit regular/repeating elements, as
well as arithmetic constraint satisfaction problems.

Recursive composition. The technique of recursive composition of proofs, and its abstraction as
Proof-Carrying Data (PCD) [CT10; BCTV14], can improve the performance and functionality of
ZK proof systems in applications that deal with multi-stage computation or large amounts of data.
This introduces additional objects and corresponding interoperability considerations. For example,
PCD compliance predicates are constraint systems with additional conventions that determine their
semantics, and for interoperability these conventions require precise specification.

Benchmarks. We strive to create concrete reference benchmarks and reference platforms, to
enable cross-paper milliseconds comparisons and competitions.

We seek to create an open competition with well-specified evaluation criteria, to evaluate different
proof schemes in various well-defined scenarios.

3.8.2 Frontends and DSLs

We would like to expand the discussion on the areas of domain-specific languages, specifically in
aspects of interoperability, correctness and efficiency (even enabling source-to-source optimisation).

The goal of Gadget Interoperability, in the Extended Constraint-System Interoperability section,
is also pertinent to frontends.

3.8.3 Verification of implementations

We would to discuss the following subjects in future workshops, to assist in guiding towards best
practices: formal verification, auditing, consistency tests, etc.
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Chapter 4. Applications

4.1 Introduction

This chapter aims to overview existing techniques for building ZKP-based applications, including
designing the protocols to meet best-practice security requirements. We distinguish between high-
level and low-level applications, where the former are the protocols designed for specific use-cases
and the latter are the necessary underlying operations or sub-protocols. Each use case admits a
circuit, and we discuss the sub-circuits needed to ensure security and functionality of the protocol.
We refer to the circuits as predicates and the sub-circuits as gadgets:

• Predicate: The relation or condition that the statement and witness must satisfy. Can be
represented as a circuit.

• Gadget: The underlying tools needed to construct the predicate. In some cases, a gadget
can be interpreted as a security requirement (e.g., using the commitment verification gadget
is equivalent to ensuring the privacy of underlying data).

Recall from Section 1.5 the syntax of a proof system between a prover and verifier. As we will see,
the protocols can be abstracted and generalized to admit several use-cases; similarly, there exist
compilers that will generate the necessary gadgets from commonly used programming languages.
Creating the constraint systems is a fundamental part of the applications of ZKP, which is the
reason why there is a large variety of front-end software options available.

Functionality vs. performance. The design of ZKPs is subject to the tradeoff between func-
tionality and performance. Users would like to have powerful ZKPs, in the sense that the system
permits constructing proofs for any predicate, which leads to the necessity of universal ZKPs. On
the other hand, users would like to have efficient constructions. According to Table 3.4.1, it is
possible to classify ZKPs as: (i) universal or non-universal; (ii) scalable or non-scalable; and (iii)
preprocessing or non-preprocessing. Item (i) is related to the functionality of the underlying ZKP,
while items (ii) and (iii) are related to performance. The utilization of zk-SNARKs allows universal
ZKPs with very efficient verifiers. However, many proposals depend upon an expensive preprocess-
ing, which makes such systems hard to scale for some use-cases. A technique called Proof-Carrying
Data (PCD), originally proposed in Ref. [CT10], allows obtaining recursive composition for exist-
ing ZKPs in a modular way. This means that zk-SNARKs can be used as a building block to
construct scalable and non-preprocessing solutions. The result is not only an efficient verifier, as
in zk-SNARKs, but also a prover whose consumption of computational resources is efficient, in
particular with respect to memory requirements, as described in Refs. [BCTV17] and [BCCT13].

Organization. Section 4.2 mentions different types of verifiability properties of interest to ap-
plications. Section 4.3 enumerates some prior works. Section 4.4 describes possible gadgets useful
for diverse applications. The subsequent three sections present three ZKP use-cases: Section 4.5
describes a use-case related to identity management; Section 4.6 examines an application context
related to asset transfer; Section 4.7 exemplifies one use-case related to regulation compliance.
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4.2 Types of verifiability

Verifiability type. When designing ZK based applications, one needs to keep in mind which of
the following three models (that define the functionality of the ZKP) is needed:

1. Public. Publicly verifiable as a requirement: a scheme / use-case where there is a system
requirement that the proofs are transferable.

2. Designated. Designated verifier as a security feature: only the intended receiver of the proof
can verify it, making the proof non-transferable. This property can apply to both interactive
and non-interactive ZKPs.

3. Optional. There is no need to be able to transfer but also no non-transferability requirement.
This property is applicable both in the interactive and in the non-interactive model.

Section 2.2.3 discusses transferability vs. deniability, which is strongly related to aspects of public
verifiability vs. designated verifiability, both in the interactive and in the non-interactive settings.
As a use-case example, consider some application related to blockchain currency, where aspects of
user-privacy and regulatory-control are relevant.

Publicly-verifiable ZKPs can be appropriate when the validity of a transaction should be public
(e.g., so that everyone knows that some asset changed owner), while some supporting data needs to
remain private (e.g., the secret key of a blockchain address, controlling the ownership of the asset).
However, sometimes even the statement being proven should remain private beyond the scope of
the verifier, and therefore a non-transferable proof should be used. This may apply for example
to a proof of having enough funds available for a purchase, or also of knowing the secret key of a
certain blockchain address. Alice wants to prevent Bob from using the received proof to convince
Charley of the claims made by Alice. For that purpose, Alice can perform a deniability interactive
proof with Bob. Alternatively, Alice can send to Bob a (non-interactive) proof transcript built for
Bob as a designated verifier. Depending on the use case, both public-verifiability and designated-
verifiability may make sense as an application goal, and it is important to distinguish between
both.

The “designation of verifiers” allows resolving possible conflicts between authenticity and privacy
[JSI96]. For example, a voting center wants only Bob to be convinced that the vote he cast was
counted; the voting center designates Bob to be the one convinced by the validity of the proof, in
order to prevent a malicious coercer to force him to prove how he voted. Since the designated-verifier
proofs are non-transferable, Bob cannot transfer the proof even if he wants to.

Suppose Alice wants to convince only Bob that a statement θ is true. For that purpose, Alice can
prove the disjunction “Either θ is true or I know the secret key of Bob”. Given that Bob knows his
own secret key, Bob could have produced such proof by himself. Therefore, a third party Charlie
will not be convinced that θ is true after seeing such proof transcript sent from Bob. This holds
even if Bob shares his secret key to Charlie, or if the key has been publicly leaked.

Designated proofs are possible both in the interactive and non-interactive settings. In the interac-
tive setting (e.g., proving being the signer of an undeniable signature) the prover has the ability
to control when the verification takes place. However, in general (without a designated-verifier
approach) the prover may be unable to control who is able to verify the proof, namely if the verifier
is acting as a relay to another controlling party. The use of a designated proof has the potential
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to solve this problem.

4.3 Previous works

This section includes an overview of some of the works and applications existing in the zero-
knowledge world. [Contribution needed: add more references.]

ZKP protocols for anonymous credentials have been studied extensively in academic spaces [CKS10;
BCDE+14; CDD17; BCDL+17; NVV18]. Products such as Miracl, Val:ID, Sovrin [Sov18], and
LibZmix [Mik19] offer practical solutions to achieve privacy-preserving identity frameworks.

Zerocash began as an academic work and was later developed into a product ensuring anonymous
transactions [BCGG+14]. Baby ZoE enables Zerocash over Ethereum [zca18]. HAWK also uses
zk-SNARKS to enable smart-contracts with transactional privacy [KMSWP16].

4.4 Gadgets within predicates

Formalizing the security of these protocols is a very difficult task, especially since there is no
predetermined set of requirements, making it an ad-hoc process. Use-cases must be sure to
distinguish between privacy requirements and security guarantees. We discuss the use-case case of
privacy-preserving asset transfer to illustrate the difference.

Secure asset transfer is possible at several financial institutions, provided that the institution has
knowledge of the identities of the sender, recipient, asset, and amount. In a privacy-preserving asset
transfer, the identities of sender and recipient may be concealed even from the entity administering
the transfer. It is important to note that a successful transfer must meet privacy requirements as
well as provide security guarantees.

Privacy requirements might include the anonymity of sender and recipient, concealment of asset
type and asset amount. Security guarantees might include the inability of anyone besides the sender
to initiate a transfer on the sender’s behalf or the inability of a sender to execute a transfer of asset
type without sufficient holdings of the asset.

Here we outline a set of initial gadgets to be taken into account. See Table 4.1 for a simple list
of gadgets — this list should be expanded continuously and on a case by case basis. For each of
the gadgets we write the following representations, specifying what is the secret / witness, what is
public / statement:

NP statements for non-technical people:

For the [public] chess board configurations A and B;
I know some [secret] sequence S of chess moves;
such that when starting from configuration A, and applying S, all moves are
legal and the final configuration is B.

General form (Camenisch-Stadler): Zk { ( wit): P(wit, statement) }

Example of ring signature: Zk { (sig): VerifySignature(P1, sig) or VerifySignature(P2,
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sig) }

Table 4.1: List of gadgets

# Gadget name English description of the initial gadget
(before adding ZKP)

Table with
examples

G1 Commitment Envelope Table 4.2

G2 Signatures Signature authorization letter Table 4.3

G3 Encryption Envelope with a receiver stamp Table 4.4

G4 Distributed decryption Envelope with a receiver stamp that requires
multiple people to open

Table 4.5

G5 Random function Lottery machine Table 4.6

G6 Set membership Whitelist/blacklist Table 4.7

G7 Mix-net Ballot box Table 4.8

G8 Generic circuits, TMs,
or RAM programs

General calculations Table 4.9

Table 4.2: Commitment gadget (G1; envelope)

Enhanced gadget (after
adding ZKP)

ZKP statement (in
a PoK notation)

Prover knows a wit-
ness ...

...for the pub-
lic instance ...

...s.t. the following
predicate holds

I know the value hidden inside
this envelope, even though I
cannot change it

Knowledge of com-
mitted value(s)
(openings)

Opening O = (v, r)
containing a value
and randomness

Commitment
C

C = Comm(v, r)

I know that the value hidden
inside these two envelopes are
equal

Equality of com-
mitted values

Openings
O1 = (v, r1) and
O2 = (v, r2)

Commitments
C1 and C2

C1 = Comm(v, r1)
and C2 =
Comm(v, r2)

I know that the values hidden
inside these two envelopes are
related in a specific way

Relationships be-
tween committed
values – logical,
arithmetic, etc.

Openings
O1 = (v1, r1)
and O2 = (v2, r2)

Commitments
C1 and C2,
relation R

C1 = Comm(v1, r1),
C2 = Comm(v2, r2),
and R(v1, v2) = True

The value inside this envelope
is within a particular range

Range proofs Opening O = (v, r) Commitment
C, interval I

C = Comm(v, r) and
v is in the range I
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Table 4.3: Signature gadget (G2; signature authorization letter)

Enhanced gadget
(after adding ZKP)

ZKP statement (in a PoK no-
tation)

Prover knows
a witness ...

...for the public
instance ...

...s.t. the following
predicate holds

Secret valid signa-
ture over commonly
known message

Knowledge of a secret signa-
ture σ on a commonly known
message M

Signature σ Verification key
V K, message M

Verify(V K,M, σ) =
True

Secret valid signa-
ture over committed
message

Knowledge of a secret signa-
ture σ on a commonly known
commitment C of a secret
message M

Opening O,
signature σ

Verification key
V K, commit-
ment C

C = Comm(M) and
Verify(V K,M, σ) =
True

Table 4.4: Encryption gadget (G3; envelope with a receiver stamp)

Enhanced gadget (after
adding ZKP)

ZKP statement (in
a PoK notation)

Prover knows a
witness ...

...for the public in-
stance ...

...s.t. the following
predicate holds

The output plaintext(s) cor-
respond to the public ci-
phertext(s).

Knowledge of a se-
cret plaintext M

Secret decryption
key SK

Ciphertext(s) C
and Encryption
key PK

Dec(SK,C) = M ,
component-wise if ∃
multiple C and M

Table 4.5: Distributed-decryption gadget (G4; envelope with a receiver stamp that requires
multiple people to open)

Enhanced gadget (after
adding ZKP)

ZKP statement (in
a PoK notation)

Prover knows a
witness ...

...for the pub-
lic instance ...

...s.t. the following predi-
cate holds

The output plaintext(s)
correspond to the public
ciphertext(s).

Knowledge of a se-
cret plaintext M

Secret shares [SKi]
of the decryption
key SK

Ciphertext(s)
C and En-
cryption key
PK

SK = Derive([SKi]) and
Dec(SK,C) = M , compo-
nent-wise if ∃ multiple C

Table 4.6: Random-function gadget (G5; lottery machine)

Enhanced gadget
(after adding ZKP)

ZKP statement (in a PoK notation) Prover knows a
witness ...

...for the pub-
lic instance ...

...s.t. the following
predicate holds

Verifiable random
function (VRF)

VRF was computed from a secret
seed and a public (or secret) input

Secret seed W Input X,
Output Y

Y = V RF (W,X)
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Table 4.7: Set-membership gadget (G6; whitelist/blacklist)

Enhanced gadget
(after adding ZKP)

ZKP statement (in a PoK
notation)

Prover knows a
witness ...

...for the public
instance ...

...s.t. the following
predicate holds

Accumulator Set inclusion Secret element X Public set S X ∈ S

Universal accumula-
tor

Set non-inclusion Secret element X Public set S X /∈ S

Merkle Tree Element occupies a certain
position within the vector

Secret element X Public vector V X = V [i] for some i

Table 4.8: Mix-net gadget (G7; ballot box)

Enhanced gadget
(after adding ZKP)

ZKP statement (in a PoK nota-
tion)

Prover knows
a witness ...

...for the public
instance ...

...s.t. the following
predicate holds

Shuffle The set of plaintexts in the in-
put and the output ciphertexts
respectively are identical.

Permutation
π, Decryption
key SK

Input ciphertext
list C and Output
ciphertext list C′

∀j,Dec(SK, π(Cj)) =
Dec(SK,C′

j)

Shuffle and reveal The set of plaintexts in the input
ciphertexts is identical to the set
of plaintexts in the output.

Permutation
π, Decryption
key SK

Input ciphertext
list C and Output
plaintext list P

∀j,Dec(SK, π(Cj)) =
Pj

Table 4.9: Generic circuits, TMs, or RAM programs gadgets (G8; general calculations)

Enhanced gadget (after
adding ZKP)

ZKP statement (in a
PoK notation)

Prover knows a
witness ...

...for the public instance ... ...s.t. the fol-
lowing predi-
cate holds

There exists some secret
input that makes this
calculation correct

ZK proof of correctness
of circuit/Turing ma-
chine/RAM program
computation

Secret input w Program C (either a cir-
cuit, TM, or RAM pro-
gram), public input x, out-
put y

C(x,w) = y

This calculation is cor-
rect, given that I already
know that some sub-
calculation is correct

ZK proof of verification
+ post-processing of
another output (Com-
position)

Secret input w Program C with subrou-
tine C′, public input x,
output y, intermediate
value z = C′(x,w), zk
proof π that z = C′(x,w)

C(x,w) = y
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4.5 Identity framework

4.5.1 Overview

In this section we describe identity management solutions using zero knowledge proofs. The idea
is that some user has a set of attributes that will be attested to by an issuer or multiple issuers,
such that these attestations correspond to a validation of those attributes or a subset of them.

After attestation it is possible to use this information, hereby called a credential, to generate a
claim about those attributes. Namely, consider the case where Alice wants to show that she is
over 18 and lives in a country that belongs to the European Union. If two issuers were responsible
for the attestation of Alice‘s age and residence country, then we have that Alice could use zero
knowledge proofs in order to show that she possesses those attributes, for instance she can use zero
knowledge range proofs to show that her age is over 18, and zero knowledge set membership to
prove that she lives in a country that belongs to the European Union. This proof can be presented
to a Verifier that must validate such proof to authorize Alice to use some service. Hence there are
three parties involved: (i) the credential holder; (ii) the credential issuer; (iii) and the verifier.

4.5.2 Motivation for Identity and Zero Knowledge

Digital identity has been a problem of interest to both academics and industry practitioners since
the creation of the internet. Specifically, it is the problem of allowing an individual, a company,
or an asset to be identified online without having to generate a physical identification for it, such
as an ID card, a signed document, a license, etc. Digitizing Identity comes with some unique
risks, loss of privacy and consequent exposure to Identity theft, surveillance, social engineering and
other damaging efforts. Indeed, this is something that has been solved partially, with the help
of cryptographic tools to achieve moderate privacy (password encryption, public key certificates,
internet protocols like TLS and several others). Yet, these solutions are sometimes not enough
to meet the privacy needs to the users / identities online. Cryptographic zero knowledge proofs
can further enhance the ability to interact digitally and gain both privacy and the assurance of
legitimacy required for the correctness of a process.

The following is an overview of the generalized version of the identity scheme. We define the
terminology used for the data structures and the actors, elaborate on what features we include and
what are the privacy assurances that we look for.

4.5.3 Terminology / Definitions

In this protocol we use several different data structures to represent the information being trans-
ferred or exchanged between the parties. We have tried to generalize the definitions as much as
possible, while adapting to the existing Identity standards and previous ZKP works.

Attribute. The most fundamental information about a holder in the system (e.g.: age, nation-
ality, univ. Degree, pending debt, etc.). These are the properties that are factual and from which
specific authorizations can be derived.
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(Confidential and Anonymous) Credential. The data structure that contains attribute(s)
about a holder in the system (e.g.: credit card statement, marital status, age, address, etc). Since
it contains private data, a credential is not shareable.

(Verifiable) Claim. A zero-knowledge predicate about the attributes in a credential (or many of
them). A claim must be done about an identity and should contain some form of logical statement
that is included in the constraint system defined by the zk-predicate.

Proof of Credential. The zero knowledge proof that is used to verify the claim attested by the
credential. Given that the credential is kept confidential, the proof derived from it is presented as
a way to prove the claim in question.

The following are the different parties present in the protocol:

Holder. The party whose attributes will be attested to. The holder holds the credentials that
contain his / her attributes and generates Zero Knowledge Proofs to prove some claim about these.
We say that the holder presents a proof of credential for some claim.

Issuer. The party that attests attributes of holders. We say that the issuer issues a credential to
the holder.

Verifier. The party that verifies some claim about a holder by verifying the zero knowledge proof
of credential to the claim.

Remark: The main difference between this protocol and a non-ZK based Identity protocol is the
fact that in the latter, the holder presents the credentials themselves as the proof for the claim
/ authorization, whereas in this protocol, the holder presents a zero knowledge proof that was
computed from the credentials.

4.5.4 The Protocol Description

Functionality. There are many interesting features that we considered as part of the identity
protocol. There are four basic functionalities that we decided to include from the get go:

(1) third party anonymous and confidential attribute attestations through credential issuance
by the issuer;

(2) confidentially proving claims using zero knowledge proofs through the presentation of proof
of credential by the holder;

(3) verification of claims through zero knowledge proof verification by the verifier; and

(4) unlinkable credential revocation by the issuer.

There are further functionalities that we find interesting and worth exploring but that we did not
include in this version of the protocol. Some of these are credential transfer, authority delegation
and trace auditability. We explain more in detail what these are and explore ways they could be
instantiated.
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Privacy requirements. One should aim for a high level of privacy for each of the actors in
the system, but without compromising the correctness of the protocol. We look at anonymity
properties for each of the actors, confidentiality of their interactions and data exchanges, and
at the unlinkability of public data (in committed form). These usually can be instantiated as
cryptographic requirements such as commitment non-malleability, indistinguishability from random
data, unforgeability, accumulator soundness or as statements in zero-knowledge such as proving
knowledge of preimages, proving signature verification, etc.

• Holder anonymity: the underlying physical identity of the holder must be hidden from the
general public, and if needed from the issuer and verifier too. For this we use pseudo-random
strings called identifiers, which are tied to a secret only known to the holder.

• Issuer anonymity: only the holder should know what issuer issued a specific credential.

• Anonymous credential: when a holder presents a credential, the verifier may not know who
issued the certificate. He / She may only know that the credential was issued by some
approved issuer.

• Holder untraceability: the holder identifiers and credentials can’t be used to track holders
through time.

• Confidentiality: no one but the holder and the issuer should know what the credential at-
tributes are.

• Identifier linkability: no one should be able to link two identifier unless there is a proof
presented by the holder.

• Credential linkability: No one should be able to link two credentials from the publicly available
data. Mainly, no two issuers should be able to collude and link two credentials to one same
holder by using the holder’s digital identity.

In depth view. For the specific instantiation of the scheme, we examine in Tables 4.10–4.13
the different ways that these requirements can be achieved and what are the trade-offs to be done
(e.g.: using pairwise identifiers vs. one fixed public key; different revocation mechanisms; etc.) and
elaborate on the privacy and efficiency properties of each.

Functionalities vs. privacy and robustness requirements. The following four tables de-
scribe, for four functionalities/problems, Several aspects of instantiation method, proof details and
privacy/robustness are described in the following four tables related to four functionalities/problems:

• Table 4.10: Holder identification

• Table 4.11: Issuer identification

• Table 4.12: Credential issuance

• Table 4.13: Credential revocation
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Table 4.10: Holder identification: how to identify a holder of credentials

Instantiation Method Proof Details Privacy / Robustness

Single identifier in the feder-
ated realm: PRF based Public
Key (idPK) derived from the
physical ID of the entity and
attested / onboarded by a fed-
eral authority

- The first credential an entity
must get is the onboarding cre-
dential that attests to its iden-
tity on the system

- Any proof of credential gener-
ated by the holder must include
a verification that the idPK was
issued an onboarding credential

- Physical identity is hidden yet connected to
the public key.

- Issuers can collude to link different creden-
tials by the same holder.

- An entity can have only one identity in the
system

Single identifier in the self-
sovereign realm: PRF based
Public Key (idPK) self derived
by the entity.

- Any proof of credential must
show the holder knows the
preimage of the idPK and that
the credential was issued to the
idPK in question

- Physical identity is hidden and does not nec-
essarily have to be connected to the public
key

- Issuers can collude to link different creden-
tials by the same holder

- An entity can have several identities and
conveniently forget any of them upon is-
suance of a “negative credential”

Multiple identifiers: Pairwise
identification through identi-
fiers. For each new inter-
action the holder generates a
new identifier.

- Every time a holder needs to
connect to a previous issuer, it
must prove a connection of the
new and old identifiers in ZK

- Any proof of credential must
show the holder knows the se-
cret of the identifier that the
credential was issued to.

- Physical identity is hidden and does not nec-
essarily have to be connected to the public
key

- Issuers cannot collude to link the credentials
by the same holder

- An entity can have several identities and
conveniently forget any of them upon is-
suance of a “negative credential”
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Table 4.11: Issuer identification

Instantiation Method Proof Details Privacy / Robustness

Federated permissions: there is a list
of approved issuers that can be up-
dated by either a central authority
or a set of nodes

- To accept a credential one must
validate the signature against one
from the list. To maintain the
anonymity of the issuer, ring sig-
natures can be used

- For every proof of credential, a
holder must prove that the signa-
ture in its credential is of an issuer
in the approved list

- The verifier / public would not
know who the issuer of the cre-
dential is but would know it is ap-
proved.

Free permissions: anyone can be-
come an issuer, which use identifiers:

- Public identifier: type 1 is the is-
suer whose signature verification
key is publicly available

- Pair-wise identifiers: type 2 is the
issuer whose signature verification
key can be identified only pair-wise
with the holder / verifier

- The credentials issued by type 1 is-
suers can be used in proofs to un-
related parties

- The credentials issued by type 2 is-
suers can only be used in proofs
to parties who know the issuer in
question.

- If ring signatures are used, the type
one issuer identifiers would not im-
ply that the identity of the issuer
can be linked to a credential, it
would only mean that “Key K_a
belongs to company A”

- Otherwise, only the type two is-
suers would be anonymous and un-
linkable to credentials

Table 4.12: Credential Issuance

Instantiation Method Proof Details Privacy / Robustness

Blind signatures: the issuer signs
on a commitment of a self-
attested credential after seeing
a proof of correct attestation; a
second kind of proof would be
needed in the system

- The proof of correct attestation must
contain the structure, data types,
ranges and credential type that the is-
suer allows

- In some cases, the proof must contain
verification of the attributes themselves
(e.g.: address is in Florida, but not
know the city)

– The proof of credential must not be
accepted if the signature of the cre-
dential was not verified either in zero-
knowledge or as part of some public
verification

- Issuer’s signatures on credentials
add limited legitimacy: a holder
could add specific values / at-
tributes that are not real and the
issuer would not know

- An Issuer can collude with a
holder to produce blind signatures
without the issuer being blamed

In the clear signatures: the issuer
generates the attestation, sign-
ing the commitment and sending
the credential in the clear to the
holder

- The proof of credential must not be
accepted if the signature of the cre-
dential was not verified either in zero-
knowledge or as part of some public ver-
ification

- Issuer must be trusted, since she
can see the Holder’s data and
could share it with others

- The signature of the issuer can be
trusted and blame could be allo-
cated to the issuer
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Table 4.13: Credential Revocation

Instantiation Method Proof Details Privacy / Robustness

Credential Revocation
Positive accumulator revo-
cation: the issuer revokes
the credential by removing
an element from an accu-
mulator [BCDL+17]

- The holder must prove set membership of
a credential to prove it was issued and was
not revoked at the same time

- The issuer can revoke a credential by re-
moving the element that represents it from
the accumulator

- If the accumulator is maintained by
a central authority, then only the au-
thority can link the revocation to the
original issuance, avoiding timing at-
tacks by general parties (join-revoke
linkability)

- If the accumulator is maintained
through a public state, then there can
be linkability of revocation with is-
suance since one can track the added
values and test its membership

Negative accumulator re-
vocation: the issuer re-
vokes by adding an element
to an accumulator

- The holder must prove set membership of
a credential to prove it was issued

- The issuer can revoke a credential by
adding to the negative accumulator the re-
vocation secret related to the credential to
be revoked

- The holder must prove set non-
membership of a revocation secret
associated to the credential in question

- The verifier must use the most recent ver-
sion of the accumulator to validate the
claim

- Even when the accumulator is main-
tained through a public state, the re-
vocation cannot be linked to the is-
suance since the two events are inde-
pendent of each other

Gadgets. Each of the methods for instantiating the different functionalities use some of the
following gadgets that have been described in the Gadgets section. There are three main parts to
the predicate of any proof.

1. The first is proving the veracity of the identity, in this case the holder, for which the following
gadgets can / should be used:
• Commitment for checking that the identity has been attested to correctly.
• PRF for proving the preimage of the identifier is known by the holder
• Equality of strings to prove that the new identifier has a connection to the previous

identifier used or to an approved identifier.

2. Then there is the part of the constraint system that deals with the legitimacy of the creden-
tials, the fact that it was correctly issued and was not revoked.
• Commitment for checking that the credential was correctly committed to.
• PRF for proving that the holder knows the credential information, which is the preimage

of the commitment .
• Equality of strings to prove that the credential was issued to an identifier connected

to the current identifier.
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• Accumulators (Set membership / non-membership) to prove that the commit-
ment to the credential exists in some set (usually an accumulator), implying that it was
issued correctly and that it was not revoked.

3. Finally there is the logic needed to verify the rules / constraints imposed on the attributes
themselves. This part can be seen as a general gadget called “credentials”, which allows to
verify the specific attributes embedded in a credential. Depending on the credential type, it
uses the following low level gadgets:
• Data Type used to check that the data in the credential is of the correct type
• Range Proofs used to check that the data in the credential is within some range
• Arithmetic Operations (field arithmetic, large integers, etc.) used for verifying

arithmetic operations were done correctly in the computation of the instance.
• Logical Operators (bigger than, equality, etc.) used for comparing some value in

the instance to the data in the credentials or some computation derived from it.

Security caveats

1. If the Issuer colludes with the Verifier, they could use the revocation mechanism to reveal
information about the Holder if there is real-time sharing of revocation information.

2. Furthermore, if the commitments to credentials and the revocation information can be tracked
publicly and the events are dependent of each other (e.g.: revocation by removing a commit-
ment), then there can be linkability between issuance and revocation.

3. In the case of self-attestation or collusion between the issuer and the holder, there is a much
lower assurance of data integrity. The inputs to the ZKP could be spoofed and then the proof
would not be sound.

4. The use of Blockchains create a reliance on a trusted oracle for external state. On the other
hand, the privacy guaranteed at blockchain-content level is orthogonal to network-level traffic
analysis.

4.5.5 A use-case example of credential aggregation

We are going to focus our description on a specific use case: accredited investors. In this scenario
the credential holder will be able to show that she is accredited without revealing more information
than necessary to prove such a claim.

Use-case description. As a way to illustrate the above protocol, we present a specific use-case
and explicitly write the predicate of the proof. Mainly, there is an identity, Alice, who wants to
prove to some company, Bob Inc. that she is an accredited investor, under the SEC rules, in order
to acquire some company shares. Alice is the prover; the IRS, the AML entity and The Bank are
all issuers; and Bob Inc. is the verifier.

The different processes in the adaptation of the use-case are the following:
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1. Three confidential credentials are issued to Alice which represent the rules that we apply on
an entity to be an accredited investor1:
(a) The IRS issues a tax credential, C0, that testifies to the claim “from 1/1/2017 until

1/1/2018, Alice, with identifier X0, owes 0$ to the IRS, with identifier Y ” and holds two
attributes: the net income of Alice, $income, and a bit b such that b = 1 if Alice has
paid her taxes.

(b) The AML entity issues a KYC credential, C1, that testifies to claim T1:= “Alice, with
identifier X1, has NO relation to a (set of) blacklisted organization(s)”

(c) The Bank issues a net-worth credential, C2, that testifies to claim T2:= “Alice has a net
worth of V Alice”

2. Alice then proves to Bob Inc. that:
(a) “Alice’s identifier, XBob, is related to the identifiers, Xi for i = 0, 1, 2 that are connected

to the confidential credentials Ci”
(b) “I know the credentials, which are the preimage of some commitment, Ci, were issued

by the legitimate issuers”
(c) “The credentials, which are the preimage of some commitment, Ci, that exist in an

accumulator, U , satisfy the three statements Ti”

Instantiation details. Based on the different options laid out in the table above, the following
have been used:

• Holder identification: we instantiate the identifiers as a unique anonymous identifier, pub-
licKey

• Issuance identification: the identity of the issuers is known to all the participants, who can
publicly verify the signature on the credentials they issue2.

• Credential issuance: credentials are issued by publishing a signed commitment to a positive
accumulator and sharing the credential in the clear to Alice.

• Credential revocation: is done by removing the commitment of credential from a dynamic and
positive accumulator. Alice must prove membership of commitment to show her credential
was not revoked.

• Credential verification: Bob Inc. then verifies the cryptographic proof with the instance.

Note that the transfer of company shares as well as the issuance of company shares is outside of the
scope of this use-case, but one could use the “Asset Transfer” section of this document to provide
that functionality.

On another note, the fact that the proving and verification keys were validated by the SEC is an
assurance to Bob Inc. that proof verification implies Alice is an accredited investor.

1We assume that the SEC generates the constraint system for the accreditation rules as the circuit used to generate
the proving and verification keys. In the real scenario, here are the Federal Rules for accreditation.

2With public signature verification keys that are hard coded into the circuit
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The Predicate

• Blue = publicly visible in protocol / statement

• Red = secret witness, potentially shared between parties when proving

Definitions / Notation:

Public state: Accumulator, for issuance and revocation, which includes all the commitments to the
credentials.

ConfCred = Commitment to Cred = { Revoke, certificateType, publicKey, Attribute(s) }

Where, again, the IRS, AML and Bank are authorities with well-known public keys. Alice’s pub-
licKey is her long term public key and one cannot create a new credential unless her long term ID
has been endorsed. The goal of the scheme is for the holder to create a fresh proof of confidential
aggregated credentials to the claim of accredited investor.

IRS issues a ConfCredIRS = Commitment( openIRS, revokeIRS, “IRS”, myID, $Income, b ), sigIRS
AML issues ConfCredAML= Commitment( openAML, revokeAML, “AML”, myID, “OK”), sigAML

Holder generates a fresh public key freshCred to serve as an ephemeral blinded aggregate credential,
and a ZKP of the following:

ZkPoK{ (witness: myID, ConfCredIRS, ConfCredAML, sigIRS, sigAML, $Income, , mySig, openIRS,
openAML statement: freshCred, minIncomeAccredited ) : Predicate:

- ConfCredIRS is a commitment to the IRS credential ( openIRS, “IRS”, myID, $Income )

- ConfCredAML is the AML crdential to ( openAML, “AML”, myID, “OK” )

- $Income >= minIncomeAccredited

- b = 1 = “myID paid full taxes”

- mySig is a signature on freshCred for myID

- ProveNonRevoke( )

}

Present the credential to relying party: freshCred and zkp.

ProveNonRevoke( rhIRS, w_hrIRS, rhAML, w_hrAML, a_IRS

• revokeIRS: revocation handler from IRS. Can be embedded as an attribute in ConfCredtIRS
and is used to handle revocations.

• witrhIRS: accumulator witness of revokeIRS.

• revokeAML: revocation handler from AML. Can be embedded as an attribute in ConfCredtAML
and is used to handle revocations.

• witrhAML: accumulator witness of revokeAML.

• accIRS: accumulator for IRS.
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• CommRevokeIRS: commitment to revokeIRS. The holder generates a new commitment for
each revocation to avoid linkability of proofs.

• accAML: accumulator for AML.

• CommRevokeAML: commitment to revokeAML. The holder generates a new commitment for
each revocation to avoid linkability of proofs.

ZkPoK{ (witness: rhIRS, openrhIRS, wrhIRS, rhAML, openrhAML, wrhAML|| statements: CIRS, aIRS,
CAML, aAML ): Predicate:

- CIRS is valid commitment to ( openrhIRS, rhIRS )

- rhIRS is part of accumulator aIRS, under witness wrhIRS

- rhIRS is an attribute in CertIRS

- CAML is valid commitment to ( openrhAML, rhAML )

- rhAML is part of accumulator aAML, under witness wrhAML

- rhAML is an attribute in CertAML

}

- myCred is unassociated with myID, with sigIRS, sigAML etc.

- Withstands partial compromise: even if IRS leaks myID and sigIRS, it cannot be used to
reveal the sigAML or associated myID with myCred

4.6 Asset Transfer

4.6.1 Privacy-preserving asset transfers and balance updates

In this section, we examine two use-cases involving using ZK Proofs (ZKPs) to facilitate private
asset-transfer for transferring fungible or non-fungible digital assets. These use-cases are motivated
by privacy-preserving cryptocurrencies, where users must prove that a transaction is valid, without
revealing the underlying details of the transaction. We explore two different frameworks, and
outline the technical details and proof systems necessary for each.

There are two dominant paradigms for tracking fungible digital assets, tracking ownership of assets
individually, and tracking account balances. The Bitcoin system introduced a form of asset-tracking
known as the UTXO model, where Unspent Transaction Outputs correspond roughly to single-use
“coins”. Ethereum, on the other hand, uses the balance model, and each account has an associated
balance, and transferring funds corresponds to decrementing the sender’s balance, and incrementing
the receiver’s balance accordingly.

These two different models have different privacy implications for users, and have different rules
for ensuring that a transaction is valid. Thus the requirements and architecture for building ZK
proof systems to facilitate privacy-preserving transactions are slightly different for each model, and
we explore each model separately below.
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In its simplest form, the asset-tracking model can be used to track non-fungible assets. In this
scenario, a transaction is simply a transfer of ownership of the asset, and a transaction is valid if:
the sender is the current owner of the asset. In the balance model (for fungible assets), each account
has a balance, and a transaction decrements the sender’s account balance while simultaneously
incrementing the receivers. In a “balance” model, a transaction is valid if 1) The amount the
sender’s balance is decremented is equal to the amount the receiver’s balance is incremented, 2)
The sender’s balance remains non-negative 3) The transaction is signed using the sender’s key.

4.6.2 Zero-Knowledge Proofs in the asset-tracking model

In this section, we describe a simple ZK proof system for privacy-preserving transactions in the
asset-tracking (UTXO) model. The architecture we outline is essentially a simplification of the
ZCash system. The primary simplification is that we assume that each asset (“coin”) is indivisible.
In other words, each asset has an owner, but there is no associated value, and a transaction is
simply a transfer of ownership of the asset.

Motivation: Allow stakeholders to transfer non-fungible assets, without revealing the ownership
of the assets publicly, while ensuring that assets are never created or destroyed.

Parties: There are three types of parties in this system: a Sender, a Receiver and a distributed
set of validators. The sender generates a transactions and a proof of validity. The (distributed)
validators act as verifiers and check the validity of the transaction. The receiver has no direct role,
although the sender must include the receiver’s public-key in the transaction.

What is being proved: At high level, the sender must prove three things to convince the
validators that a transaction is valid.

• The asset (or “note”) being transferred is owned by the sender. (Each asset is represented by
a unique string)

• The sender proves that they have the private spending keys of the input notes, giving them
the authority to send asset.

• The private spending keys of the input assets are cryptographically linked to a signature over
the whole transaction, in such a way that the transaction cannot be modified by a party who
did not know these private keys.

What information is needed by the verifier:

• The verifiers need access to the CRS used by the proof system

• The validators need access to the entire history of transactions (this includes all UTXOs,
commitments and nullifiers as described later). This history can be stored on a distributed
ledger (e.g. the Bitcoin blockchain)

Possible attacks:

• CRS compromise: If an attacker learns the private randomness used to generate the CRS,
the attacker can forge proofs in the underlying system

• Ledger attacks: validating a transaction requires reading the entire history of transactions,
and thus a verifier with an incorrect view of the transaction history may be convinced to
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accept an incorrect transaction as valid.

• Re-identification attacks: The purpose of incorporating ZKPs into this system is to facilitate
transactions without revealing the identities of the sender and receiver. If anonymity is not
required, ZKPs can be avoided altogether, as in Bitcoin. Although this system hides the
sender and receiver of each transaction, the fact that a transaction occurred (and the time of
its occurrence) is publicly recorded, and thus may be used to re-identify individual users.

• IP-level attacks: by monitoring network traffic, an attacker could link transactions to spe-
cific senders or receivers (each transaction requires communication between the sender and
receiver) or link public-keys (pseudonyms) to real-world identities

• Man-it-the-Middle attacks: An attacker could convince a sender to transfer an asset to an
“incorrect” public-key

Setup scenario: This system is essentially a simplified version of Zcash proof system, modified
for indivisible assets. Each asset is represented by a unique AssetID, and for simplicity we assume
that the entire set of assets has been distributed, and no assets are ever created or destroyed.

At any given time, the public state of the system consists of a collection of “asset notes”. These notes
are stored as leaves in a Merkle Tree, and each leaf represents a single indivisible asset represented
by unique assetID. In more detail, a “note” is a commitment to {Nullifier, publicKey, assetID},
indicating that publicKey “owns” assetID.

Main transaction type: Sending an asset from Current Owner A to New Owner B

Security goals:

• Only the current owner can transfer the asset

• Assets are never created or destroyed

Privacy goals: Ideally, the system should hide all information about the ownership and trans-
action patterns of the users. The system sketched below does not attain that such a high-level of
privacy, but instead achieves the following privacy-preserving features

• Transactions are publicly visible, i.e., anyone can see that a transaction occurred

• Transactions do not reveal which asset is being transferred

• Transactions do not reveal the identities (public-keys) of the sender or receiver.
– Limitation: Previous owner can tell when the asset is transferred. (Mitigation: after

receiving asset, send it to yourself)

Details of a transfer: Each transaction is intended to transfer ownership of an asset from a
Current Owner to a New Owner. In this section, we outline the proofs used to ensure the validity
of a transaction. Throughout this description, we use Blue to denote information that is globally
and publicly visible in the protocol / statement. We use Red to denote private information, e.g.
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a secret witness held by the prover or information shared between the Current Owner and New
Owner.

The Current Owner, A, has the following information

• A publicKey and corresponding secretKey

• An assetID corresponding to the asset being transferred

• A note in the MerkleTree corresponding to the asset

• Knows how to open the commitment (Nullifier, assetID, publicKey) publicKeyOut of the new
Owner B

The Current Owner, A, generates

• A new NullifierOut

• A new commitment commitment (NullifierOut, assetID, publicKey)

The Current owner, A, sends

• Privately to B: NullifierOut, publicKeyOut, assetID

• Publicly to the blockchain: Nullifier, comOut, ZKProof (the structure of ZKProof is outlined
below)

If Nullifier does not exist in MerkleTree and and ZKProof validates, then comOut is added to the
merkleTree.

The structure of the Zero-Knowledge Proof: We use a modification of Camenisch-Stadler
notation to describe the describe the structure of the proof.

Public state: MerkleTree of Notes: Note = Commitment to { Nullifier, publicKey, assetID }

ZKProof = ZkPoKpp{

(witness: publicKey, publicKeyOut, merkleProof, NullifierOut, com, assetID, sig

statement: MerkleTree, Nullifier, comOut ) :

predicate:
- com is included in MerkleTree (using merkleProof)
- com is a commitment to ( Nullifier, publicKey, assetID )
- comOut is a commitment to ( NullifierOut, publicKeyOut, assetID )
- sig is a signature on comOut for publicKey

}

4.6.3 Zero-Knowledge proofs in the balance model

In this section, we outline a simple system for privately transferring fungible assets, in the “balance
model.” This system is essentially a simplified version of zkLedger. The state of the system is an
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(encrypted) account balance for each user. Each account balance is encrypted using an additively
homomorphic cryptosystem, under the account-holder’s key. A transaction decrements the sender’s
account balance, while incrementing the receiver’s account by a corresponding amount. If the
number of users is fixed, and known in advance, then a transaction can hide all information about
the sender and receiver by simultaneously updating all account balances. This provides a high-
degree of privacy, and is the approach taken by zkLedger. If the set of users is extremely large,
dynamically changing, or unknown to the sender, the sender must choose an “anonymity set” and
the transaction will reveal that it involved members of the anonymity set, but not the amount of the
transaction or which members of the set were involved. For simplicity of presentation, we assume
a model like zkLedger’s where the set of parties in the system is fixed, and known in advance, but
this assumption does not affect the details of the zero-knowledge proofs involved.

Motivation: Each entity maintains a private account balance, and a transaction decrements the
sender’s balance and increments the receiver’s balance by a corresponding amount. We assume that
every transaction updates every account balance, thus all information the origin, destination and
value of a transaction will be completely hidden. The only information revealed by the protocol is
the fact that a transaction occurred.

Parties:

• A set of n stakeholders who wish to transfer fungible assets anonymously

• The stakeholder who initiates the transaction is called the “prover” or the “sender”

• The receiver, or receivers do not have a distinguished role in a transaction

• A set of validators who maintain the (public) state of the system (e.g. using a blockchain or
other DLT).

What is being proved: The sender must convince the validators that a proposed transaction is
“valid” and the state of the system should be updated to reflect the new transaction. A transaction
consists of a set of n ciphertexts, (c1, . . . , cn), and where ci = Encpk(xi), and a transaction is valid if:

• The sum of all committed values is 0 (i.e., x1 + · · ·+ xn = 0)

• The sender owns the private key corresponding to all negative xi

• After the update, all account balances remain positive

What information is needed by the verifier:

• The verifiers need access to the CRS used by the proof system

• The verifiers need access to the current state of the system (i.e., the current vector of n
encrypted account balances). This state can be stored on a distributed ledger

Possible attacks:

• CRS compromise: If an attacker learns the private randomness used to generate the CRS,
the attacker can forge proofs in the underlying system

• Ledger attacks: validating a transaction requires knowing the current state of the system
(encrypted account balances), thus a validator with an incorrect view of the current state
may be convinced to accept an incorrect transaction as valid.
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• Re-identification attacks: The purpose of incorporating ZKPs into this system is to facilitate
transactions without revealing the identities of the sender and receiver. If anonymity is not
required, ZKPs can be avoided altogether, as in Bitcoin. Although this system hides the
sender and receiver of each transaction, the fact that a transaction occurred (and the time of
its occurrence) is publicly recorded, and thus may be used to re-identify individual users.

• IP-level attacks: by monitoring network traffic, an attacker could link transactions to specific
senders or receivers (each transaction requires communication between the sender and the
validators) or link public-keys (pseudonyms) to real-world identities

• Man-it-the-Middle attacks: An attacker could convince a sender to transfer an asset to an
“incorrect” public-key. This is perhaps less of a concern in the situation where the user-base
is static, and all public-keys are known in advance.

Setup scenario: There are fixed number of users, n. User i has a known public-key, pki. Each
user has an account balance, maintained as an additively homomorphic encryption of their current
balance under their pk. Each transaction is a list of n encryptions, corresponding to the amount
each balance should be incremented or decremented by the transaction. To ensure money is never
created or destroyed, the plaintexts in an encrypted transaction must sum to 0. We assume that
all account balance are initialized to non-negative values.

Main transaction type: Transferring funds from user i to user j

Security goals:

• An account balance can only be decremented by the owner of that account

• Account balances always remain non-negative

• The total amount of money in the system remains constant

Privacy goals: Ideally, the system should hide all information about the ownership and trans-
action patterns of the users. The system sketched below does not attain that such a high-level of
privacy, but instead achieves the following privacy-preserving features:

• Transactions are publicly visible, i.e., anyone can see that a transaction occurred

• Transactions do not reveal which asset is being transferred

• Transactions do not reveal the identities (public-keys) of the sender or receiver.
Limitation: transaction times are leaked

Details of a transfer: Each transaction is intended to update the current account balances
in the system. In this section, we outline the proofs used to ensure the validity of a transaction.
Throughout this description, we use Blue to denote information that is globally and publicly visible
in the protocol / statement. We use Red to denote private information, e.g. a secret witness held
by the prover.
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The Sender, A, has the following information

• Public keys pk1, . . . , pkn
• secretKeyi corresponding to publicKeyi, and a values xj , to transfer to user j

• The sender’s own current account balance, yi

The Sender, A, generates

• a vector of ciphertexts, C1, . . . , Cn with Ct = Encpkt(xt)

The Sender, A, sends

• The vector of ciphertexts C1, . . . , Cn and ZKProof (described below) to the blockchain

ZK Circuit:

Public state: The current state of the system, i.e., a vector of (encrypted) account balances,
B1, . . . , Bn.

ZKProof = ZkPoKpp{ (witness: i, x1, . . . , xn, sk statement: C1, . . . , Cn ) :

predicate:

- Ct is an encryption to xt under public key pkt for t = 1, . . . , n

- x1 + · · ·+ xn = 0

- xt ≥ 0 OR sk corresponds to pkt for t = 1, . . . , n

- xt ≥ 0 OR current balance Bt encrypts a value no smaller than |xt| for t = 1, . . . , n

}

4.7 Regulation Compliance

4.7.1 Overview

An important pattern of applications in which zero-knowledge protocols are useful is within settings
in which a regulator wishes to monitor, or assess the risk related to some item managed by a
regulated party. One such example can be whether or not taxes are being paid correctly by an
account holder, or is a bank or some other financial entity solvent, or even stable.

The regulator in such cases is interested in learning “the bottom line”, which is typically derived
from some aggregate measure on more detailed underlying data, but does not necessarily need to
know all the details. For example, the answer to the question of “did the bank take on too many
loans?” Is eventually answered by a single bit (Yes/No) and can be answered without detailing
every single loan provided by the bank and revealing recipients, their income, and other related
data.

Additional examples of such scenarios include:

– Checking that taxes have been properly paid by some company or person.
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– Checking that a given loan is not too risky.

– Checking that data is retained by some record keeper (without revealing or transmitting the
data)

– Checking that an airplane has been properly maintained and is fit to fly

The use of Zero knowledge proofs can then allow the generation of a proof that demonstrate the
correctness of the aggregate result. The idea is to show something like the following statement:
There is a commitment (possibly on a blockchain) to records that show that the result is correct.

Trusting data fed into the computation: In order for a computation on hidden data to prove
valuable, the data that is fed in must be grounded as well. Otherwise, proving the correctness
of the computation would be meaningless. To make this point concrete: A credit score that was
computed from some hidden data can be correctly computed from some financial records, but when
these records are not exposed to the recipient of the proof, how can the recipient trust that they
are not fabricated?

Data that is used for proofs should then generally be committed to by parties that are separate
from the prover, and that are not likely to be colluding with the prover. To continue our example
from before: an individual can prove that she has a high credit score based on data commitments
that were produced by her previous lenders (one might wonder if we can indeed trust previous
lenders to accurately report in this manner, but this is in fact an assumption implicitly made in
traditional credit scoring as well).

The need to accumulate commitments regarding the operation and management of the processes
that are later audited using zero-knowledge often fits well together with blockchain systems, in
which commitments can be placed in an irreversible manner. Since commitments are hiding, such
publicly shared data does not breach privacy, but can be used to anchor trust in the veracity of
the data.

4.7.2 An example in depth: Proof of compliance for aircraft

An operator is flying an aircraft, and holds a log of maintenance operations on the aircraft. These
records are on different parts that might be produced by different companies. Maintenance and
flight records are attested to by engineers at various locations around the world (who we assume
do not collude with the operator).

The regulator wants to know that the aircraft is allowed to fly according to a certain set of rules.
(Think of the Volkswagen emissions cheating story.)

The problem: Today, the regulator looks at the records (or has an auditor do so) only once in a
while. We would like to move to a system where compliance is enforced in “real time”, however,
this reveals the real-time operation of the aircraft if done naively.

Why is zero-knowledge needed? We would like to prove that regulation is upheld, without revealing
the underlying operational data of the aircraft which is sensitive business operations. Regulators
themselves prefer not to hold the data (liability and risk from loss of records), prefer to have
companies self-regulate to the extent possible.

What is the threat model beyond the engineers/operator not colluding? What about the parts
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manufacturers? Regulators? Is there an antagonistic relationship between the parts manufacturers?

This scheme will work on regulation that isn’t vague, such as aviation regulation. In some cases,
the rules are vague on purpose and leave room for interpretation.

4.7.3 Protocol high level

Parties:

• Operator / Party under regulation: performs operations that need to comply to a regulation.
For example an airline operator that operates aircrafts

• Risk bearer / Regulator : verifies that all regulated parties conform to the rules; updates the
rules when risks evolve. For example, the FAA regulates and enforces that all aircrafts to
be airworthy at all times. For an aircraft owner leasing their assets, they want to know that
operation and maintenance does not degrade their asset. Same for a bank that financed an
aircraft, where the aircraft is the collateral for the financing.

• Issuer / 3rd party attesting to data: Technicians having examined parts, flight controllers
attesting to plane arriving at various locations, embarked equipment providing signed readings
of sensors.

What is being proved:

• The operator proves to the regulator that the latest maintenance data indicates the aircraft
is airworthy

• The operator proves to the bank that the aircraft maintenance status means it is worth a
given value, according to a formula provided by that bank

What are the privacy requirements?

• An operator does not want to reveal the details of his operations and assets maintenance
status to competition

• The aircraft identity must be kept anonymous from all parties except the regulators and the
technicians.

• The technician’s identity must be kept anonymous from the regulator but if needed the
operator can be asked to open the commitments for the regulator to validate the reports

The proof predicate: “The operator is the owner of the aircraft, and knows some signed data
attesting to the compliance with regulation rules: all the components are safe to fly”.

• The plane is made up of the components x1, . . . , xn and for each of the components:
– There is an legitimate attestation by an engineer who checked the component, and signed

it’s OK
– The latest attestation by a technician is recent: the timestamp of the check was done

before date D

What is the public / private data:

• Private:
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– Identity of the operator
– Airplane record
– Examination report of the technicians
– Identity of the technician who signed the report

• Public:
– Commitment to airplane record

There is a record for the airplane that is committed to a public ledger, which includes miles flown.
There are records that attest to repairs / inspections by mechanics that are also committed to the
ledger. The decommitment is communicated to the operator. These records reference the identifier
of the plane.

Whenever the plane flies, the old plane record needs to be invalidated, and a new on committed
with extra mileage.
When a proof of “airworthiness” is required, the operator proves that for each part, the mileage
is below what requires replacement, or that an engineer replaced the part (pointing to a record
committed by a technician).

At the gadget level:

• The prover proves knowledge of a de-commitment of an airplane record (decommitment)

• The record is in the set of records on the blockchain (set membership)

• and knowledge of de-commitments for records for the parts (decommitment) that are also in
the set of commitments on the ledger (set membership)

• The airplane record is not revoked (i.e., it is the most recent one), (requires set non-membership
for the set of published nullifiers)

• The id of the plane noted in the parts is the same as the id of the plane in the plane record.
(equality)

• The mileage of the plane is lower than the mileage needed to replace each part (range proofs)
OTHERWISE

• There exists a record (set membership)that says that the part was replaced by a technician
(validate signature of the technician (maybe use ring signature outside of ZK?))

4.8 Conclusions

– The asset transfer and regulation can be used in the identity framework in a way that the
additions complete the framework.

– External oracles such as blockchain used for storing reference to data commitments
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Appendix A. Acronyms and glossary

A.1 Acronyms

• 3SAT: 3-satisfiability
• AND: AND gate (Boolean gate)
• API: application program interface
• CRH: collision-resistant hash (function)
• CRS: common-reference string
• DAG: directed acyclic graph
• DSL: domain specific languages
• FFT: fast-Fourier transform
• ILC: ideal linear commitment
• IOP: interactive oracle proofs
• LIP: linear interactive proofs
• MA: Merlin–Arthur
• NIZK: non-interactive zero-knowledge
• NP: non-deterministic polynomial
• PCD: proof-carrying data
• PCP: probabilistic chackable proof

• PKI: public-key infrastructure
• QAP: quadratic arithmetic program
• R1CS: rank-1 constraint system
• RAM: random access memory
• RSA: Rivest–Shamir–Adleman
• SHA: secure hash algorithm
• SMPC: secure multiparty computation
• SNARG: succinct non-interactive argument
• SNARK: SNARG of knowledge
• SRS: structured reference string
• UC: universal composability or universally

composable
• URS: uniform random string
• XOR: eXclusive OR (Boolean gate)
• ZK: zero knowledge
• ZKP: zero-knowledge proof

A.2 Glossary

• NIZK: Non-Interactive Zero-Knowledge. Proof system, where the prover sends a single message
to the verifier, who then decides to accept or reject. Usually set in the common reference string
model, although it is also possible to have designated verifier NIZK proofs.

• SNARK: Succinct Non-interactive ARgument of Knowledge. A special type of non-interactive
proof system where the proof size is small and verification is fast.

• Instance: Public input that is known to both prover and verifier. Notation: x. (Some scientific
articles use “instance” and “statement” interchangeably, but we distinguish between the two.)

• Witness: Private input to the prover. Others may or may not know something about the
witness. Notation: w.

• Application Inputs: Parts of the witness interpreted as inputs to an application, coming from
an external data source. The complete witness and the instance can be computed by the prover
from application inputs.

• Relation: Specification of relationship between instances and witness. A relation can be viewed
as a set of permissible pairs (instance, witness). Notation: R.

• Language: Set of instances that have a witness in R. Notation: L.
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Section A.2 Glossary

• Statement: Defined by instance and relation. Claims the instance has a witness in the relation,
which is either true or false. Notation: x ∈ L.

• Constraint System: a language for specifying relations.
• Proof System: A zero-knowledge proof system is a specification of how a prover and verifier

can interact for the prover to convince the verifier that the statement is true. The proof system
must be complete, sound and zero-knowledge.
– Complete: If the statement is true and both prover and verifier follow the protocol; the verifier

will accept.
– Sound: If the statement is false, and the verifier follows the protocol; he will not be convinced.
– Zero-knowledge: If the statement is true and the prover follows the protocol; the verifier will

not learn any confidential information from the interaction with the prover but the fact the
statement is true.

• Backend: an implementation of ZK proof’ system’s low-level cryptographic protocol.
• Frontend: means to express ZK statements in a convenient language and to prove such state-

ments in zero knowledge by compiling them into a low-level representation and invoking a suitable
ZK backend.

• Instance reduction: conversion of the instance in a high-level statement to an instance for a
low-level statement (suitable for consumption by the backend), by a frontend.

• Witness reduction: conversion of the witness to a high-level statement to witness for a low-level
statement (suitable for consumption by the backend), by a frontend.

• R1CS (Rank 1 Constraint Systems): an NP-complete language for specifying relations,
as system of bilinear constraints (i.e., a rank 1 quadratic constraint system), as defined in
[BCGTV13, Appendix E in extended version]. This is a more intuitive reformulation of QAP.

• QAP (Quadratic Arithmetic Program): An NP-complete language for specifying relations
via a quadratic system in polynomials, defined in [PHGR13]. See R1CS for an equivalent formu-
lation.

Reference strings:

• CRS (Common Reference String): A string output by the NIZK’s Generator algorithm,
and available to both the prover and verifier. Consists of proving parameters and verification
parameters. May be a URS or an SRS.

• URS (Uniform Random String): A common reference string created by uniformly sampling
from some space, and in particular involving no secrets in its creation. (Also called Common
Random String in prior literature; we avoid this term due to the acronym clash with Common
Reference String).

• SRS (Structured Reference String): A common reference string created by sampling from
some complex distribution, often involving a sampling algorithm with internal randomness that
must not be revealed, since it would create a trapdoor that enables creation of convincing proofs
for false statements. The SRS may be non-universal (depend on the specific relation) or universal
(independent of the relation, i.e., serve for proving all of NP).

• PP (Prover Parameters) or Proving Key: The portion of the Common Reference String
that is used by the prover.

• VP (Verifier Parameters) or Verification Key: The portion of the Common Reference
String that is used by the verifier.
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Appendix B. Version history

The development of the ZKProof Community reference can be tracked across a sequence of main
versions. Here is a summarized description of their sequence:

• Version 0 [2018-08-01]: Baseline documents. The proceedings of the 1st ZKProof
Workshop (May 2018), with contributions settled by 2018-08-01 and available at ZKProof.org,
along with the ZKProof Charter, constitute the starting point of the ZKProof Community
reference. Each of the three Workshop tracks — security, applications, implementation —
lead to a corresponding proceedings document, named “ZKProof Standards ⟨track name⟩
Track Proceedings”. The ZKProof charter is also part of the baseline documents.

• Version 0.1 [2019-04-11]: LaTeX/PDF compilation. Upon the ZKProof organization
team requested feedback from the NIST-PEC team, the content in the several proceedings was
ported to LaTeX code and compiled into a single PDF document entitled “ZKProof Commu-
nity Reference” (version 0.1) for presentation and discussion at the 2nd ZKProof workshop.
The version includes editorial adjustments for consistent style and easier indexation.

• Version 0.2 [2019-12-31]: Consolidated draft. The process of consolidating the draft
community reference document started at the 2nd ZKProof workshop (April 2019), where an
editorial process was introduced and several “breakout sessions” were held for discussion on
focused topics, including the “NIST comments on the initial ZKProof documentation”. The
discussions yielded suggestions of topics to develop and incorporate in a new version of the
document. Several concrete items of “proposed contributions” were then defined as GitHub
issues, and the subsequently submitted contributions provided several content improvements,
such as: distinguish ZKPs of knowledge vs. of membership; recommend security parameters
for benchmarks; clarify some terminology related to ZKP systems (e.g., statements, CRS,
R1CS); discuss interactivity vs. non-interactivity, and transferability vs. deniability; clarify
the scope of use-cases and applications; update the “gadgets” table; add new references. The
new version also includes numerous editorial improvements towards a consolidated document,
namely a substantially reformulated frontmatter with several new sections (abstract, open to
contributions, change log, acknowledgments, intellectual property, executive summary), a
reorganized structure with a new chapter (still to be completed) on construction paradigms.
The changes are tracked in a “diff” version of the document.

External resources. Additional documentation covering the history of development of this com-
munity reference can be found in the following online resources:

• ZKProof GitHub repository: https://github.com/zkpstandard/

• ZKProof documentation: https://zkproof.org/documents.html

• ZKProof Forum: https://community.zkproof.org/
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