
 

ZKProof Standards 
Applications Track Proceedings 

1 August 2018 + subsequent revisions 
 

This document is an ongoing work in progress. 
Feedback and contributions are encouraged. 

 
Track Chairs: 

Daniel Benarroch, Ran Canetti and Andrew Miller 
 

Track Participants: 
Shashank Agrawal, Tony Arcieri, Vipin Bharathan, Josh Cincinnati, Joshua 

Daniel,  Anuj Das Gupta, Angelo De Caro, Michael Dixon, Maria 
Dubovitskaya, Nathan George, Brett Hemenway Falk, Hugo Krawczyk, 
Jason Law, Anna Lysyanskaya, Zaki Manian, Eduardo Morais, Neha 

Narula, Gavin Pacini, Jonathan Rouach, Kartheek Solipuram, Mayank 
Varia, Douglas Wikstrom and Aviv Zohar 

Introduction and Motivation 
In this track we aim to overview existing techniques for building ZKP based systems, including 
designing the protocols to meet the best-practice security requirements. One can distinguish 
between high-level and low-level applications, where the former are the protocols designed for 
specific use-cases and the latter are the underlying operations needed to define a ZK predicate. 
We call gadgets the sub-circuits used to build the actual constraint system needed for a 
use-case. In some cases, a gadget can be interpreted as a security requirement (e.g.: using the 
commitment verification gadget is equivalent to ensuring the privacy of underlying data).  
 
As we will see, the protocols can be abstracted and generalized to admit several use-cases; 
similarly, there exist compilers that will generate the necessary gadgets from commonly used 
programming languages. Creating the constraint systems is a fundamental part of the 
applications of ZKP, which is the reason why there is a large variety of front-ends available. 
 



 

In this document, we present three use-cases and a set of useful gadgets to be used within the 
predicate of each of the three use-cases: identity framework, asset transfer and regulation 
compliance. 

What this document is NOT about: 
- A unique explanation of how to build ZKP applications 
- An exhaustive list of the security requirements needed to build a ZKP system 
- A comparison of front-end tools 
- A show of preference for some use-cases or others 

Notation and Definitions 
See Security and Implementation track for definitions of predicate / prover / verifier / proof / 
proving key, etc. 
 
When designing ZK based applications, one needs to keep in mind which of the following three 
models (that define the functionality of the ZKP) is needed: 

1. Publicly verifiable as a requirement: a scheme / use-case where the proofs are 
transferable, where such property is actually a requirement of the system. Only 
non-interactive ZK (NIZK) can actually hold this property. 

2. Designated verifier as a security feature: only the intended receiver of the proof can 
verify it, making the proof non-transferable.This property can apply to both interactive 
and non-interactive ZK. 

3. The final model is one where neither of the above is needed: a ZK where there is no 
need to be able to transfer but also no non-transferability requirement. Again, this model 
can apply both in the interactive and non-interactive model. 

 
For example, digital money based applications belong to the first model, compliance for 
regulation lives in the second model (albeit depending on the use-case). In general, the 
credential system can be in both of the last two models, given the extra constraints that would 
make it belong to the second model. 

Previous works 
This section will include an overview of some of the works and applications existing in the 
zero-knowledge world. We asked the Applications track participants to send us a description of 
their work. We are now In the process of collecting the content. 



 

Gadgets within predicates 
Formalizing the security of these protocols is a very difficult task, especially since there is no 
predetermined set of requirements, making it an ad-hoc process. Here we outline a set of initial 
gadgets to be taken into account. This list should be expanded continuously and on a case by 
case basis. For each of the gadget below, we write the following representations, specifying 
what is the secret / witness, what is public / statement: 
 
NP statements for non-technical people: 

For the [public] chess board configurations A and B; 
I know some [secret] sequence S of chess moves; 
such that when starting from configuration A, and applying S, all moves are legal 
and the 
final configuration is B. 

 
General form (Camenisch-Stadler): Zk { ( wit):   P(wit, statement)   } 
Example of ring signature: Zk { (sig):  VerifySignature(P1, sig) or VerifySignature(P2, sig)  } 
 
 

Gadget Name English 
Description 
of the initial 
gadget 
(before 
adding ZKP) 

The resulting 
enhanced gadget 
(after adding ZKP) 

ZKP 
Statements (In 
a proof of 
knowledge 
notation) 

Prover knows 
a witness... 

...for the 
public 
instance... 

...s.t. the 
following 
predicate 
holds 

Technical 
notation 
(API) 

Commitment Envelope I know the value 
hidden inside this 
envelope, even 
though I cannot 
change it 

Knowledge of 
committed 
value(s) 
(openings) 

Opening(s) O = 
(v,r) containing 
a value and 
randomness 

Committed 
value(s) C 

C = 
Comm(O), 
componentwis
e if there are 
multiple C, O 

 

  I know that the 
value hidden inside 
these two 
envelopes are 
equal 

Equality of 
committed 
values 

Opening O Committed 
values C1 
and C2 

C1 = 
Comm(O) and 
C2 = 
Comm(O) 

 

  I know that the 
values hidden 
inside these two 
envelopes are 
related in a specific 
way 

Relationships 
between 
committed 
values -- logical, 
arithmetic, etc. 

Witnesses O1 
and O2 

Committed 
values C1 
and C2, 
relation R 

C1 = 
Comm(O1), 
C2 = 
Comm(O2), 
and R(O1, 
O'2) = True 

 



 

  The value inside 
this envelope is 
within a particular 
range 

Range proofs Opening O Committed 
value C, 
interval I 

C = Comm(O) 
and O is in the 
range I 

 

        

Signatures   Knowledge of a 
signature on a 
message 

Signature σ Verification 
key VK, 
message M 

Verify(VK, m, 
σ) = True 

 

propose: 
blind, ring, 
group, 
homom. 

  Knowledge of a 
signature on a 
committed value 

Message M, 
signature σ 

Verification 
key VK, 
committed 
value C 

C = Comm(M) 
and Verify(VK, 
m, σ) = True 

 

        

Encryption Envelope with 
a receiver 
stamp 

The ciphertext is 
computed correctly 
and I know the 
plaintext 

Knowledge of 
the plaintext 

Plaintext P, 
KeyGen 
randomness R 

Ciphertext 
C, 
Encryption 
key PK 

(SK, PK) ← 
KeyGen(R) 
and Dec(SK, 
C) = P  

   Knowledge of 
the plaintext and 
encryption key 

Plaintext P, Key 
pair (SK, PK) 

Ciphertext C Dec(SK, C) = 
P 

 

        

Distributed 
decryption 

Envelope with 
a receiver 
stamp that 
requires 
multiple 
people to open 

The output 
plaintext(s) 
correspond to the 
public ciphertext(s). 

Knowledge of 
the plaintext 

Secret shares 
of the 
decryption key 

Ciphertext(s) 
C and 
Encryption 
key PK 

Dec(SK, C) = 
P, 
componentwis
e if ∃ multiple 
C 

 

        

Random 
function 

Lottery 
machine 

Verifiable random 
function (VRF) 

VRF was 
computed 
correctly from a 
secret seed and 
a public (or 
secret) input 

Secret seed W Input X, 
Output Y 

Y = VRF(W, 
X) 

 

        

Set 
membership 

 Accumulator Set inclusion     

   Set 
non-inclusion 

    

        



 

Mix-net Ballot box Shuffle The set of 
plaintexts in the 
input and the 
output 
ciphertexts 
respectively are 
identical. 

Permutation π, 
Decryption key 
SK 

Input 
ciphertext 
list C and 
Output 
ciphertext 
list C' 

Dec(SK, 
π(C_j)) = 
Dec(SK, C'_j) 
∀ j 

 

 

 

Shuffle and reveal The set of 
plaintexts in the 
input ciphertexts 
is identical to the 
set of plaintexts 
in the output. 

Permutation π, 
Decryption key 
SK 

Input 
ciphertext 
list C and 
Output 
plaintext list 
P 

Dec(SK, 
π(C_j)) = P_j 
∀ j 

 

        

Generic 
circuits, TMs, 
or RAM 
programs 

General 
calculations 

There exists some 
secret input that 
makes this 
calculation correct 

ZK proof of 
correctness of 
circuit/Turing 
machine/RAM 
program 
computation 

Secret input w Program C 
(either a 
circuit, TM, 
or RAM 
program), 
public input 
x, output y 

C(x, w) = y  

  This calculation is 
correct, given that I 
already know that 
some 
sub-calculation is 
correct 

ZK proof of 
verification + 
postprocessing 
of another output 
(Composition) 

Secret input w Program C 
with 
subroutine 
C', public 
input x, 
output y, 
intermediate 
value z = 
C'(x, w), zk 
proof π that 
z = C'(x, w) 

C(x, w) = y  

 

Identity Framework 

Overview 
In this section we describe identity management solutions using zero knowledge proofs.            

The idea is that some user has a set of attributes that will be attested to by an issuer or multiple                     
issuers, such that these attestations correspond to a validation of those attributes or a subset of                
them.  



 

After attestation it is possible to use this information, hereby called a credential, to              
generate a claim about those attributes. Namely, consider the case where Alice wants to show               
that she is over 18 and lives in a country that belongs to the European Union. If two issuers                   
were responsible for the attestation of Alice`s age and residence country, then we have that               
Alice could use zero knowledge proofs in order to show that she possesses those attributes, for                
instance she can use zero knowledge range proofs to show that her age is over 18, and zero                  
knowledge set membership to prove that she lives in a country that belongs to the European                
Union. This proof can be presented to a Verifier that must validate such proof to authorize Alice                 
to use some service. Hence there are three parties involved: (i) the credential holder; (ii) the                
credential issuer; (iii) and the verifier.  

We are going to focus our description on a specific use case: accredited investors. In               
this scenario the credential holder will be able to show that she is accredited without revealing                
more information than necessary to prove such a claim.  

Motivation for Identity and Zero Knowledge 
Digital identity has been a problem of interest to both academics and industry             

practitioners since the creation of the internet. Specifically, it is the problem of allowing an               
individual, a company, or an asset to be identified online without having to generate a physical                
identification for it, such as an ID card, a signed document, a license, etc. Digitizing Identity                
comes with some unique risks, loss of privacy and consequent exposure to Identity theft,              
surveillance, social engineering and other damaging efforts. Indeed, this is something that has             
been solved partially, with the help of cryptographic tools to achieve moderate privacy             
(password encryption, public key certificates, internet protocols like tls and several others). Yet,             
these solutions are sometimes not enough to meet the privacy needs to the users / identities                
online. Cryptographic zero knowledge proofs can further enhance the ability to interact digitally             
and gain both privacy and the assurance of legitimacy required for the correctness of a process. 
  

The following is an overview of the generalized version of the identity scheme. We define               
the terminology used for the data structures and the actors, elaborate on what features we               
include and what are the privacy assurances that we look for.  

Terminology / Definitions 
In this protocol we use several different data structures to represent the information             

being transferred or exchanged between the parties. We have tried to generalize the definitions              
as much as possible, while adapting to the existing Identity standards and previous ZKP works. 
 

Attribute. The most fundamental information about a holder in the system (e.g.: age, 
nationality, univ. Degree, pending debt, etc.). These are the properties that are factual and from 
which specific authorizations can be derived. 



 

(Confidential and Anonymous) Credential. The data structure that contains 
attribute(s) about a holder in the system (e.g.: credit card statement, marital status, age, 
address, etc). Since it contains private data, a credential is not shareable.  

(Verifiable) Claim. A zero-knowledge predicate about the attributes in a credential (or 
many of them). A claim must be done about an identity and should contain some form of logical 
statement that is included in the constraint system defined by the zk-predicate.  

Proof of Credential. The zero knowledge proof that is used to verify the claim attested 
by the credential. Given that the credential is kept confidential, the proof derived from it is 
presented as a way to prove the claim in question. 

 
The following are the different parties present in the protocol: 

Holder. The party whose attributes will be attested to. The holder holds the credentials 
that contain his / her attributes and generates Zero Knowledge Proofs to prove some claim 
about these. We say that the holder presents a proof of credential for some claim. 

Issuer. The party that attests attributes of holders. We say that the issuer issues a               
credential to the holder. 

Verifier. The party that verifies some claim about a holder by verifying the zero              
knowledge proof of credential to the claim. 

 
Remark: The main difference between this protocol and a non-ZK based Identity protocol is the 
fact that in the latter, the holder presents the credentials themselves as the proof for the claim / 
authorization, whereas in this protocol, the holder presents a zero knowledge proof that was 
computed from the credentials. 

The Protocol Description 
Functionality. There are many interesting features that we considered as part of the 

identity protocol. There are four basic functionalities that we decided to include from the get go: 
(1) third party anonymous and confidential attribute attestations through credential issuance by 
the issuer, (2) confidentially proving claims using zero knowledge proofs through the 
presentation of proof of credential by the holder, (3) verification of claims through zero 
knowledge proof verification by the verifier and (4) unlinkable credential revocation by the 
issuer. There are further functionalities that we find interesting and worth exploring but that we 
did not include in this version of the protocol. Some of these are credential transfer, authority 
delegation and trace auditability. We explain more in detail what these are and explore ways 
they could be instantiated.  
 

Privacy requirements. One should aim for a high level of privacy for each of the actors 
in the system, but without compromising the correctness of the protocol. We look at anonymity 
properties for each of the actors, confidentiality of their interactions and data exchanges, and at 
the unlinkability of public data (in committed form). These usually can be instantiated as 
cryptographic requirements such as commitment non-malleability, indistinguishability from 



 

random data, unforgeability, accumulator soundness or as statements in zero-knowledge such 
as proving knowledge of preimages, proving signature verification, etc. 
 

● Holder anonymity: the underlying physical identity of the holder must be hidden from the 
general public, and if needed from the issuer and verifier too. For this we use 
pseudo-random strings called identifiers, which are tied to a secret only known to the 
holder.  

● Issuer anonymity: only the holder should know what issuer issued a specific credential. 
● Anonymous credential: when a holder presents a credential, the verifier may not know 

who issued the certificate. He / She may only know that the credential was issued by 
some approved issuer. 

● Holder untraceability: the holder identifiers and credentials can’t be used to track holders             
through time. 

● Confidentiality: no one but the holder and the issuer should know what the credential 
attributes are. 

● Identifier linkability: no one should be able to link two identifier unless there is a proof 
presented by the holder. 

● Credential linkability: No one should be able to link two credentials from the publicly 
available data. Mainly, no two issuers should be able to collude and link two credentials 
to one same holder by using the holder’s digital identity. 

 
In depth view. For the specific instantiation of the scheme, we examine the different 

ways that these requirements can be achieved and what are the trade-offs to be done (e.g.: 
using pairwise identifiers vs. one fixed public key; different revocation mechanisms; etc.) and 
elaborate on the privacy and efficiency properties of each.  
  



 

 

Functionality / 
Problem 

Instantiation 
Method 

Proof Details Privacy / Robustness Refere
nce 

Holder 
identification: 
how  to identify 
a holder of 
credentials 

Single identifier in 
the federated 
realm: PRF based 
Public Key (idPK) 
derived from the 
physical ID of the 
entity and attested / 
onboarded by a 
federal authority  

- The first credential an 
entity must get is the 
onboarding credential 
that attests to its 
identity on the system 

- Any proof of 
credential generated 
by the holder must 
include a verification 
that the idPK was 
issued an onboarding 
credential 

- Physical identity is 
hidden yet connected 
to the public key.  

- Issuers can collude to 
link different credentials 
by the same holder.  

- An entity can have only 
one identity in the 
system  

 

Single identifier in 
the self-sovereign 
realm: PRF based 
Public Key (idPK) 
self derived by the 
entity. 

- Any proof of 
credential must show 
the holder knows the 
preimage of the idPK 
and that the 
credential was issued 
to the idPK in 
question 

- Physical identity is 
hidden and does not 
necessarily have to be 
connected to the public 
key 

- Issuers can collude to 
link different credentials 
by the same holder 

- An entity can have 
several identities and 
conveniently forget any 
of them upon issuance 
of a “negative 
credential” 

 

Multiple identifiers: 
Pairwise 
identification 
through identifiers. 
For each new 
interaction the 
holder generates a 
new identifier.  

- Every time a holder 
needs to connect to a 
previous issuer, it 
must prove a 
connection of the 
new and old 
identifiers in ZK 

- Any proof of 
credential must show 
the holder knows the 
secret of the identifier 
that the credential 
was issued to. 

- Physical identity is 
hidden and does not 
necessarily have to be 
connected to the public 
key 

- Issuers cannot collude 
to link the credentials 
by the same holder 

- An entity can have 
several identities and 
conveniently forget any 
of them upon issuance 
of a “negative 
credential” 

 



 

Issuer 
identification 

Federated 
permissions: there 
is a list of approved 
issuers that can be 
updated by either a 
central authority or 
a set of nodes 

- To accept a 
credential one must 
validate the signature 
against one from the 
list. To maintain the 
anonymity of the 
issuer, ring 
signatures can be 
used 

- For every proof of 
credential, a holder 
must prove that the 
signature in its 
credential is of an 
issuer in the 
approved list 

- The verifier / public 
would not know who 
the issuer of the 
credential is but would 
know it is approved. 

 

Free permissions: 
anyone can 
become an issuer, 
which use 
identifiers: 
- Public identifier: 

type 1 is the 
issuer whose 
signature 
verification key is 
publicly available 

- Pair-wise 
identifiers: type 2 
is the issuer 
whose signature 
verification key 
can be identified 
only pair-wise 
with the holder / 
verifier 

- The credentials 
issued by type 1 
issuers can be used 
in proofs to unrelated 
parties 

- The credentials 
issued by type 2 
issuers can only be 
used in proofs to 
parties who know the 
issuer in question. 

- If ring signatures are 
used, the type one 
issuer identifiers would 
not imply that the 
identity of the issuer 
can be linked to a 
credential, it would 
only mean that “Key 
K_a belongs to 
company A” 

- Otherwise, only the 
type two issuers would 
be anonymous and 
unlinkable to 
credentials 

 

Credential 
Issuance 

Blind signatures: 
the issuer signs on 
a commitment of a 
self-attested 
credential after 
seeing a proof of 
correct attestation; 
a second kind of 
proof would be 

- The proof of correct 
attestation must 
contain the structure, 
data types, ranges 
and credential type 
that the issuer allows 

- In some cases, the 
proof must contain 
verification of the 

- Issuer’s signatures on 
credentials add limited 
legitimacy: a holder 
could add specific 
values / attributes that 
are not real and the 
issuer would not know 

- An Issuer can collude 
with a holder to 

 



 

needed in the 
system 

attributes themselves 
(e.g.: address is in 
Florida, but not know 
the city) 

- The proof of 
credential must not 
be accepted if the 
signature of the 
credential was not 
verified either in 
zero-knowledge or as 
part of some public 
verification 

produce blind 
signatures without the 
issuer being blamed 

In the clear 
signatures: the 
issuer generates 
the attestation, 
signing the 
commitment and 
sending the 
credential in the 
clear to the holder  

- The proof of 
credential must not 
be accepted if the 
signature of the 
credential was not 
verified either in 
zero-knowledge or as 
part of some public 
verification 

- Issuer must be trusted, 
since she can see the 
Holder’s data and could 
share it with others 

- The signature of the 
issuer can be trusted 
and blame could be 
allocated to the issuer 

 

Credential 
Revocation 

Positive 
accumulator 
revocation: the 
issuer revokes the 
credential by 
removing an 
element from an 
accumulator 

- The holder must 
prove set membership 
of a credential to prove 
it was issued and was 
not revoked at the 
same time 
- The issuer can revoke 
a credential by 
removing the element 
that represents it from 
the accumulator 
 
 

- If the accumulator is 
maintained by a central 
authority, then only the 
authority can link the 
revocation to the original 
issuance, avoiding timing 
attacks by general 
parties (join-revoke 
linkability) 
- If the accumulator is 
maintained through a 
public state, then there 
can be linkability of 
revocation with issuance 
since one can track the 
added values and test its 
membership 
  

[4] 

Negative 
accumulator 
revocation: the 

- The holder must 
prove set membership 
of a credential to prove 

- Even when the 
accumulator is 
maintained through a 

 



 

issuer revokes by 
adding an element 
to an accumulator 

it was issued 
- The issuer can revoke 
a credential by adding 
to the negative 
accumulator the 
revocation secret 
related to the credential 
to be revoked 
- The holder must 
prove set 
non-membership of a 
revocation secret  
associated to the 
credential in question 
- The verifier must use 
the most recent version 
of the accumulator to 
validate the claim 
 
 

public state, the 
revocation cannot be 
linked to the issuance 
since the two events are 
independent of each 
other 
 

 
 
Gadgets 
Each of the methods for instantiating the different functionalities use some of the following 
gadgets that have been described in the Gadgets section. There are three main parts to the 
predicate of any proof. 

1. The first is proving the veracity of the identity, in this case the holder, for which the 
following gadgets can / should be used: 

○ Commitment for checking that the identity has been attested 
to correctly. 

○ PRF for proving the preimage of the identifier is known by the holder 
○ Equality of strings to prove that the new identifier has a connection to the 

previous identifier used or to an approved identifier.\ 
 

2. Then there is the part of the constraint system that deals with the legitimacy of the 
credentials, the fact that it was correctly issued and was not revoked.  

○ Commitment for checking that the credential was correctly committed to.  
○ PRF for proving that the holder knows the credential information, which is the             

preimage of the commitment . 
○ Equality of strings to prove that the credential was issued to an identifier 

connected to the current identifier. 
○ Accumulators (Set membership / non-membership) to prove that the 

commitment to the credential exists in some set (usually an accumulator), 
implying that it was issued correctly and that it was not revoked. 



 

3. Finally there is the logic needed to verify the rules / constraints imposed on the attributes                
themselves. This part can be seen as a general gadget called “credentials”, which allows              
to verify the specific attributes embedded in a credential. Depending on the 
credential type, it uses the following low level gadgets:  

○ Data Type used to check that the data in the credential is of the correct type  
○ Range Proofs used to check that the data in the credential is within some range 
○ Arithmetic Operations (field arithmetic, large integers, etc.) used for verifying 

arithmetic operations were done correctly in the computation of the instance. 
○ Logical Operators (bigger than, equality, etc.) used for comparing some value 

in the instance to the data in the credentials or some computation derived from it. 
 

Security caveats 
1. If the Issuer colludes with the Verifier, they could use the revocation mechanism to 

reveal information about the Holder if there is real-time sharing of revocation information. 
2. Furthermore, if the commitments to credentials and the revocation information can be   

tracked publicly and the events are dependent of each other (e.g.: revocation by             
removing a commitment), then there can be linkability between issuance and revocation.  

3. In the case of self-attestation or collusion between the issuer and the holder, there is a                
much lower assurance of data integrity. The inputs to the ZKP could be spoofed and               
then the proof would not be sound. 

4. The use of Blockchains create a reliance on a trusted oracle for external state. On the 
other hand, the privacy guaranteed at blockchain-content level is orthogonal to 
network-level traffic analysis.  

 

A use-case example of credential aggregation 

Use-case description 
As a way to illustrate the above protocol, we present a specific use-case and explicitly write the                 
predicate of the proof. Mainly, there is an identity, Alice, who wants to prove to some company,                 
Bob Inc. that she is an accredited investor, under the SEC rules, in order to acquire some                 
company shares. Alice is the prover; the IRS, the AML entity and The Bank are all issuers; and                  
Bob Inc. is the verifier. 
 
The different processes in the adaptation of the use-case are the following: 

1. Three confidential credentials are issued to Alice which represent the rules that we apply              
on an entity to be an accredited investor : 1

1 We assume that the SEC generates the constraint system for the accreditation rules as the circuit used 
to generate the proving and verification keys. In the real scenario, here are the Federal Rules for 
accreditation. 

https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=8edfd12967d69c024485029d968ee737&r=SECTION&n=17y3.0.1.1.12.0.46.176
https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=8edfd12967d69c024485029d968ee737&r=SECTION&n=17y3.0.1.1.12.0.46.176


 

a. The IRS issues a tax credential, C_0, that testifies to the claim “from 1/1/2017              
until 1/1/2018, Alice, with identifier X_0, ows 0$ to the IRS, with identifier Y” and               
holds two attributes: the net income of Alice, $income, and a bit b such that b=1 if                 
Alice has paid her taxes. 

b. The AML entity issues a KYC credential, C_1, that testifies to claim T_1:= “Alice,              
with identifier X_1, has NO relation to a (set of) blacklisted organization(s)” 

c. The Bank issues a net-worth credential, C_2, that testifies to claim T_2:= “Alice             
has a net worth of V_alice” 

2. Alice then proves to Bob Inc. that: 
a. “Alice’s identifier, X_bob, is related to the identifiers, {X_i} for i = 0,1,2 that are               

connected to the confidential credentials {C_i}” 
b. “I know the credentials, which are the preimage of some commitment, {C_i}, were             

issued by the legitimate issuers” 
c. “The credentials, which are the preimage of some commitment, {C_i}, that exist in             

an accumulator, U, satisfy the three statements {T_i}” 

Instantiation details 
Based on the different options laid out in the table above, the following have been used: 
 

- Holder identification: we instantiate the identifiers as a unique anonymous identifier,           
publicKey 

- Issuance identification: the identity of the issuers is known to all the participants, who              
can publicly verify the signature on the credentials they issue . 2

- Credential issuance: credentials are issued by publishing a signed commitment to a            
positive accumulator and sharing the credential in the clear to Alice. 

- Credential revocation: is done by removing the commitment of credential from a dynamic             
and positive accumulator. Alice must prove membership of commitment to show her            
credential was not revoked. 

- Credential verification: Bob Inc. then verifies the cryptographic proof with the instance. 
 
 
Note that the transfer of company shares as well as the issuance of company shares is outside                 
of the scope of this use-case, but one could use the “Asset Transfer” section of this document to                  
provide that functionality.  
 
On another note, the fact that the proving and verification keys were validated by the SEC is an                  
assurance to Bob Inc. that proof verification implies Alice is an accredited investor. 

The Predicate 
 

2 With public signature verification keys that are hard coded into the circuit 



 

Blue = publicly visible in protocol / statement 
Red = secret witness, potentially shared between parties when proving 

 
Definitions / Notation: 
 
Public state: Accumulator, for issuance and revocation, which includes all the commitments to             
the credentials. 
 
ConfCred = Commitment to Cred = { Revoke, certificateType, publicKey, Attribute(s)  } 
 
Where, again, the IRS, AML and Bank are authorities with well-known public keys. Alice’s              
publicKey is her long term public key and one cannot create a new credential unless her long                 
term ID has been endorsed. The goal of the scheme is for the holder to create a fresh proof of                    
confidential aggregated credentials to the claim of accredited investor. 

 
IRS issues a ConfCredIRS = Commitment( openIRS, revokeIRS, “IRS”, myID, $Income, b ),             
sigIRS 
AML issues ConfCredAML= Commitment( openAML, revokeAML, “AML”, myID, “OK”), sigAML 

 
Holder generates a fresh public key freshCred to serve as an ephemeral blinded aggregate              
credential, and a ZKP of the following: 

 
ZkPoK{ (witness: myID, ConfCredIRS, ConfCredAML, sigIRS, sigAML, $Income, , mySig, openIRS,           
openAML statement: freshCred, minIncomeAccredited ) :  

Predicate:  
- ConfCredIRS is a commitment to the IRS credential  ( openIRS, “IRS”, myID, $Income ) 
- ConfCredAML is the AML crdential to ( openAML, “AML”, myID, “OK” ) 
- $Income >= minIncomeAccredited 
- b = 1 = “myID paid full taxes” 
- mySig is a signature on freshCred for myID 
- ProveNonRevoke(  ) 
   } 

 
Present the credential to relying party:   freshCred and zkp. 
 

ProveNonRevoke( rhIRS, w_hrIRS, rhAML, w_hrAML, a_IRS 
● revokeIRS: revocation handler from IRS. Can be embedded as an attribute in 

ConfCredtIRS and is used to handle revocations. 
● witrhIRS: accumulator witness of revokeIRS. 
● revokeAML: revocation handler from AML. Can be embedded as an attribute in 

ConfCredtAML and is used to handle revocations. 
● witrhAML: accumulator witness of revokeAML. 
● accIRS: accumulator for IRS. 



 

● CommRevokeIRS: commitment to revokeIRS. The holder generates a new 
commitment for each revocation to avoid linkability of proofs.  

● accAML: accumulator for AML. 
● CommRevokeAML: commitment to revokeAML. The holder generates a new 

commitment for each revocation to avoid linkability of proofs.  
 
 
ZkPoK{ (witness: rhIRS, openrhIRS, wrhIRS, rhAML, openrhAML, wrhAML|| statements: CIRS, aIRS , CAML , 
aAML ): 

Predicate: 
- CIRS is valid commitment to ( openrhIRS, rhIRS ) 
- rhIRS is part of accumulator aIRS, under witness wrhIRS 

- rhIRS is an attribute in CertIRS 
- CAML is valid commitment to ( openrhAML, rhAML ) 
- rhAML is part of accumulator aAML, under witness wrhAML 
- rhAML is an attribute in CertAML 

} 
 
- myCred is unassociated with myID, with sigIRS, sigAML etc. 
- Withstands partial compromise: even if IRS leaks myID and sigIRS, it cannot be             
used to reveal the sigAML or associated myID with myCred 

Asset Transfer 

Privacy-preserving asset transfers and balance updates 
 
In this section, we examine two use-cases involving using ZK Proofs (ZKPs) to facilitate private 
asset-transfer for transferring fungible or non-fungible digital assets.  These use-cases are 
motivated by privacy-preserving cryptocurrencies, where users must prove that a transaction is 
valid, without revealing the underlying details of the transaction.  We explore two different 
frameworks, and outline the technical details and proof systems necessary for each. 
 
There are two dominant paradigms for tracking fungible digital assets, tracking ownership of 
assets individually, and tracking account balances.  The Bitcoin system introduced a form of 
asset-tracking known as the UTXO model, where Unspent Transaction Outputs correspond 
roughly to single-use “coins”.  Ethereum, on the other hand, uses the balance model, and each 
account has an associated balance, and transferring funds corresponds to decrementing the 
sender’s balance, and incrementing the receiver’s balance accordingly.  
 
These two different models have different privacy implications for users, and have different rules 
for ensuring that a transaction is valid.  Thus the requirements and architecture for building ZK 



 

proof systems to facilitate privacy-preserving transactions are slightly different for each model, 
and we explore each model separately below. 
 
In its simplest form, the asset-tracking model can be used to track non-fungible assets.  In this 
scenario, a transaction is simply a transfer of ownership of the asset, and a transaction is valid 
if: the sender is the current owner of the asset.  In the balance model (for fungible assets), each 
account has a balance, and a transaction decrements the sender’s account balance while 
simultaneously incrementing the receivers.  In a “balance” model, a transaction is valid if 1) The 
amount the sender’s balance is decremented is equal to the amount the receiver’s balance is 
incremented, 2) The sender’s balance remains non-negative 3) The transaction is signed using 
the sender’s key. 
 

Zero-Knowledge Proofs in the asset-tracking model 
 
In this section, we describe a simple ZK proof system for privacy-preserving transactions in the 
asset-tracking (UTXO) model.  The architecture we outline is essentially a simplification of the 
ZCash system.  The primary simplification is that we assume that each asset (“coin”) is 
indivisible.  In other words, each asset has an owner, but there is no associated value, and a 
transaction is simply a transfer of ownership of the asset. 
 
Motivation: Allow stakeholders to transfer non-fungible assets, without revealing the ownership 
of the assets publicly, while ensuring that assets are never created or destroyed. 
 
Parties: There are three types of parties in this system: a Sender, a Receiver and a distributed 
set of validators.  The sender generates a transactions and a proof of validity.  The (distributed) 
validators act as verifiers and check the validity of the transaction.  The receiver has no direct 
role, although the sender must include the receiver’s public-key in the transaction. 
What is being proved: At high level, the sender must prove three things to convince the 
validators that a transaction is valid. 

● The asset (or “note”) being transferred is owned by the sender.  (Each asset is 
represented by a unique string) 

● The sender proves that they have the private spending keys of the input notes, giving 
them the authority to send asset. 

● The private spending keys of the input assets are cryptographically linked to a signature 
over the whole transaction, in such a way that the transaction cannot be modified by a 
party who did not know these private keys. 

What information is needed by the verifier: 
● The verifiers need access  to the CRS used by the proof system 
● The validators need access to the entire history of transactions (this includes all UTXOs, 

commitments and nullifiers as described later).  This history can be stored on a 
distributed ledger (e.g. the Bitcoin blockchain) 



 

Possible attacks: 
● CRS compromise: If an attacker learns the private randomness used to generate the 

CRS, the attacker can forge proofs in the underlying system 
● Ledger attacks: validating a transaction requires reading the entire history of 

transactions, and thus a verifier with an incorrect view of the transaction history may be 
convinced to accept an incorrect transaction as valid. 

● Re-identification attacks: The purpose of incorporating ZKPs into this system is to 
facilitate transactions without revealing the identities of the sender and receiver.  If 
anonymity is not required, ZKPs can be avoided altogether, as in Bitcoin.  Although this 
system hides the sender and receiver of each transaction, the fact that a transaction 
occurred (and the time of its occurrence) is publicly recorded, and thus may be used to 
re-identify individual users. 

● IP-level attacks: by monitoring network traffic, an attacker could link transactions to 
specific senders or receivers (each transaction requires communication between the 
sender and receiver) or link public-keys (pseudonyms) to real-world identities 

● Man-it-the-Middle attacks: An attacker could convince a sender to transfer an asset to an 
“incorrect” public-key 

 
Setup scenario:  This system is essentially a simplified version of Zcash proof system, modified 
for indivisible assets.  Each asset is represented by a unique AssetID, and for simplicity we 
assume that the entire set of assets has been distributed, and no assets are ever created or 
destroyed. 
 
At any given time, the public state of the system consists of a collection of “asset notes”.  These 
notes are stored as leaves in a Merkle Tree, and each leaf represents a single indivisible asset 
represented by unique assetID.  In more detail, a “note” is a commitment to { Nullifier, publicKey, 
assetID }, indicating that publicKey “owns” assetID. 
 
Main transaction type: Sending an asset from Current Owner A to New Owner B 
 
Security goals:  

● Only the current owner can transfer the asset 
● Assets are never created or destroyed 

Privacy goals:  Ideally, the system should hide all information about the ownership and 
transaction patterns of the users.  The system sketched below does not attain that such a 
high-level of privacy, but instead achieves the following privacy-preserving features 

● Transactions are publicly visible, i.e., anyone can see that a transaction occurred 
● Transactions do not reveal which asset is being transferred 
● Transactions do not reveal the identities (public-keys) of the sender or receiver. 

○ Limitation: Previous owner can tell when the asset is transferred.  (Mitigation: 
after receiving asset, send it to yourself) 

 
Details of a transfer: 



 

 
Each transaction is intended to transfer ownership of an asset from a Current Owner to a New 
Owner.  In this section, we outline the proofs used to ensure the validity of a transaction. 
Throughout this description, we use Blue to denote information that is globally and publicly 
visible in the protocol / statement.  We use Red to denote private information, e.g. a secret 
witness held by the prover or information shared between the Current Owner and New Owner. 
 
The Current Owner, A, has the following information 

● A publicKey and corresponding secretKey 
● An assetID corresponding to the asset being transferred 
● A note in the MerkleTree corresponding to the asset 
● Knows how to open the commitment (Nullifier, assetID, publicKey) publicKeyOut of the 

new Owner B 
 
The Current Owner, A, generates 

● A new NullifierOut 
● A new commitment commitment (NullifierOut, assetID, publicKey) 

 
The Current owner, A, sends 

● Privately to B: NullifierOut, publicKeyOut, assetID 
● Publicly to the blockchain: Nullifier, comOut, ZKProof (the structure of ZKProof is 

outlined below) 
 
If Nullifier does not exist in MerkleTree and and ZKProof validates, then comOut is added to the 
merkleTree. 
 
The structure of the Zero-Knowledge Proof: 
 
We use a modification of Camenisch-Stadler notation to describe the describe the structure of 
the proof. 
 
Public state: MerkleTree of Notes: 
Note = Commitment to { Nullifier, publicKey, assetID } 
 
ZKProof = ZkPoKpp{  

(witness: publicKey, publicKeyOut, merkleProof, NullifierOut, com, assetID, sig 
statement: MerkleTree, Nullifier, comOut ) :  
predicate:  
- com is included in MerkleTree (using merkleProof) 
- com is a commitment to ( Nullifier, publicKey, assetID ) 
- comOut is a commitment to ( NullifierOut, publicKeyOut, assetID ) 
- sig is a signature on comOut for publicKey 

   } 

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/69316/eth-3353-01.pdf


 

 

Zero-Knowledge proofs in the balance model 
 
In this section, we outline a simple system for privately transferring fungible assets, in the 
“balance model.”  This system is essentially a simplified version of zkLedger.  The state of the 
system is an (encrypted) account balance for each user.  Each account balance is encrypted 
using an additively homomorphic cryptosystem, under the account-holder’s key.  A transaction 
decrements the sender’s account balance, while incrementing the receiver’s account by a 
corresponding amount.  If the number of users is fixed, and known in advance, then a 
transaction can hide all information about the sender and receiver by simultaneously updating 
all account balances.  This provides a high-degree of privacy, and is the approach taken by 
zkLedger.  If the set of users is extremely large, dynamically changing, or unknown to the 
sender, the sender must choose an “anonymity set” and the transaction will reveal that it 
involved members of the anonymity set, but not the amount of the transaction or which 
members of the set were involved.  For simplicity of presentation, we assume a model like 
zkLedger’s where the set of parties in the system is fixed, and known in advance, but this 
assumption does not affect the details of the zero-knowledge proofs involved. 
 
Motivation: Each entity maintains a private account balance, and a transaction decrements the 
sender’s balance and increments the receiver’s balance by a corresponding amount.  We 
assume that every transaction updates every account balance, thus all information the origin, 
destination and value of a transaction will be completely hidden.  The only information revealed 
by the protocol is the fact that a transaction occurred. 
 
Parties: 

● A set of n stakeholders who wish to transfer fungible assets anonymously 
● The stakeholder who initiates the transaction is called the “prover” or the “sender” 
● The receiver, or receivers do not have a distinguished role in a transaction 
● A set of validators who maintain the (public) state of the system (e.g. using a blockchain 

or other DLT). 
What is being proved: The sender must convince the validators that a proposed transaction is 
“valid” and the state of the system should be updated to reflect the new transaction.  A 
transaction consists of a set of n ciphertexts, (c_1,...,c_n), and where c_i = Enc_{pk}(x_i), and a 
transaction is valid if: 

● The sum of all committed values is 0 (i.e., x_1 + … + x_n = 0) 
● The sender owns the private key corresponding to all negative x_i 
● After the update, all account balances remain positive 

What information is needed by the verifier: 
● The verifiers need access  to the CRS used by the proof system 
● The verifiers need access to the current state of the system (i.e., the current vector of n 

encrypted account balances).  This state can be stored on a distributed ledger 

https://www.usenix.org/system/files/conference/nsdi18/nsdi18-narula.pdf


 

Possible attacks: 
● CRS compromise: If an attacker learns the private randomness used to generate the 

CRS, the attacker can forge proofs in the underlying system 
● Ledger attacks: validating a transaction requires knowing the current state of the system 

(encrypted account balances), thus a validator with an incorrect view of the current state 
may be convinced to accept an incorrect transaction as valid. 

● Re-identification attacks: The purpose of incorporating ZKPs into this system is to 
facilitate transactions without revealing the identities of the sender and receiver.  If 
anonymity is not required, ZKPs can be avoided altogether, as in Bitcoin.  Although this 
system hides the sender and receiver of each transaction, the fact that a transaction 
occurred (and the time of its occurrence) is publicly recorded, and thus may be used to 
re-identify individual users. 

● IP-level attacks: by monitoring network traffic, an attacker could link transactions to 
specific senders or receivers (each transaction requires communication between the 
sender and the validators) or link public-keys (pseudonyms) to real-world identities 

● Man-it-the-Middle attacks: An attacker could convince a sender to transfer an asset to an 
“incorrect” public-key.  This is perhaps less of a concern in the situation where the 
user-base is static, and all public-keys are known in advance. 

 
 
Setup scenario: There are fixed number of users, n.  User i has a known public-key, pk_i  Each 
user has an account balance, maintained as an additively homomorphic encryption of their 
current balance under their pk.  Each transaction is a list of n encryptions, corresponding to the 
amount each balance should be incremented or decremented by the transaction.  To ensure 
money is never created or destroyed, the plaintexts in an encrypted transaction must sum to 0. 
We assume that all account balance are initialized to non-negative values. 
 
Main transaction type: Transferring funds from user i to user j 
 
Security goals:  

● An account balance can only be decremented by the owner of that account 
● Account balances always remain non-negative 
● The total amount of money in the system remains constant 

Privacy goals:  Ideally, the system should hide all information about the ownership and 
transaction patterns of the users.  The system sketched below does not attain that such a 
high-level of privacy, but instead achieves the following privacy-preserving features 

● Transactions are publicly visible, i.e., anyone can see that a transaction occurred 
● Transactions do not reveal which asset is being transferred 
● Transactions do not reveal the identities (public-keys) of the sender or receiver. 

Limitation: transaction times are leaked 
 
Details of a transfer: 
 



 

Each transaction is intended to update the current account balances in the system.  In this 
section, we outline the proofs used to ensure the validity of a transaction.  Throughout this 
description, we use Blue to denote information that is globally and publicly visible in the protocol 
/ statement.  We use Red to denote private information, e.g. a secret witness held by the prover. 
 
The Sender, A, has the following information 

● Public keys pk_1,...,pk_n 
● secretKey_i corresponding to publicKey_i, and a values x_j, to transfer to user j 
● The sender’s own current account balance, y_i 

 
The Sender, A, generates 

● a vector of ciphertexts, C_1,...,C_n with C_t = Enc_{pk_t}(x_t) 
 
The Sender, A, sends 

● The vector of ciphertexts C_1,...,C_n and ZKProof (described below) to the blockchain 
 
ZK Circuit:  
 
Public state: The current state of the system, i.e., a vector of (encrypted) account balances, 
B_1,...,B_n. 
 
  ZKProof = ZkPoKpp{  (witness: i, x_1,...,x_n, sk statement: C_1,...,C_n ) : 

predicate:  
-C_t is an encryption to x_t under public key pk_t for t=1...n 
-x_1 + … + x_n = 0 
-x_t >= 0 OR sk corresponds to pk_t for t = 1...n 
-x_t >= 0 OR current balance B_t encrypts a value no smaller than |x_t| for t = 1...n 

} 

Regulation Compliance 

Overview 
An important pattern of applications in which zero-knowledge protocols are useful is within 
settings in which a regulator wishes to monitor, or assess the risk related to some item managed 
by a regulated party. One such example can be whether or not taxes are being paid correctly by 
an account holder, or is a bank or some other financial entity solvent, or even stable.  
 
The regulator in such cases is interested in learning “the bottom line”, which is typically derived 
from some aggregate measure on more detailed underlying data, but does not necessarily need 
to know all the details. For example, the answer to the question of “did the bank take on too 
many loans?” Is eventually answered by a single bit (Yes/No) and can be answered without 



 

detailing every single loan provided by the bank and revealing recipients, their income, and 
other related data.  
 
Additional examples of such scenarios include:  

- Checking that taxes have been properly paid by some company or person. 
- Checking that a given loan is not too risky. 
- Checking that data is retained by some record keeper (without revealing or transmitting 

the data) 
- Checking that an airplane has been properly maintained and is fit to fly  

 
The use of Zero knowledge proofs can then allow the generation of a proof that demonstrate the 
correctness of the aggregate result. The idea is to show something like the following statement: 
There is a commitment (possibly on a blockchain) to records that show that the result is correct.  
 
Trusting data fed into the computation:  
In order for a computation on hidden data to prove valuable, the data that is fed in must be 
grounded as well. Otherwise, proving the correctness of the computation would be meaningless. 
To make this point concrete: A credit score that was computed from some hidden data can be 
correctly computed from some financial records, but when these records are not exposed to the 
recipient of the proof, how can the recipient trust that they are not fabricated?  
 
Data that is used for proofs should then generally be committed to by parties that are separate 
from the prover, and that are not likely to be colluding with the prover. To continue our example 
from before: an individual can prove that she has a high credit score based on data 
commitments that were produced by her previous lenders (one might wonder if we can indeed 
trust previous lenders to accurately report in this manner, but this is in fact an assumption 
implicitly made in traditional credit scoring as well).  
 
The need to accumulate commitments regarding the operation and management of the 
processes that are later audited using zero-knowledge often fits well together with blockchain 
systems, in which commitments can be  placed in an irreversible manner. Since commitments 
are hiding, such publicly shared data does not breach privacy, but can be used to anchor trust in 
the veracity of the data.  

An example in depth: Proof of compliance for aircraft 
An operator is flying an aircraft, and holds a log of maintenance operations on the aircraft. 
These records are on different parts that might be produced by different companies. 
Maintenance and flight records are attested to by engineers at various locations around the 
world (who we assume do not collude with the operator).  
The regulator wants to know that the aircraft is allowed to fly according to a certain set of rules. 
(Think of the Volkswagen emissions cheating story.) 
 



 

The problem: Today, the regulator looks at th5e records (or has an auditor do so) only once in a 
while. We would like to move to a system where compliance is enforced in “real time”, however, 
this reveals the real-time operation of the aircraft if done naively. 
 
Why is zero-knowledge needed? We would like to prove that regulation is upheld, without 
revealing the underlying operational data of the aircraft which is sensitive business operations.  
Regulators themselves prefer not to hold the data (liability and risk from loss of records), prefer 
to have companies self-regulate to the extent possible.  
 
What is the threat model beyond the engineers/operator not colluding?  What about the parts 
manufacturers?  Regulators?  Is there an antagonistic relationship between the parts 
manufacturers? 
 
This scheme will work on regulation that isn't vague, such as aviation regulation. In some cases, 
the rules are vague on purpose and leave room for interpretation. 

Protocol high level 
 
Parties:  

● Operator / Party under regulation: performs operations that need to comply to a 
regulation. For example an airline operator that operates aircrafts 

● Risk bearer / Regulator : verifies that all regulated parties conform to the rules; updates 
the rules when risks evolve. For example, the FAA regulates and enforces that all 
aircrafts to be airworthy at all times. For an aircraft owner leasing their assets, they want 
to know that operation and maintenance does not degrade their asset. Same for a bank 
that financed an aircraft, where the aircraft is the collateral for the financing.  

● Issuer / 3rd party attesting to data: Technicians having examined parts, flight 
controllers attesting to plane arriving at various locations, embarked equipment providing 
signed readings of sensors. 

 
What is being proved: 

● The operator proves to the regulator that the latest maintenance data indicates the 
aircraft is airworthy 

● The operator proves to the bank that the aircraft maintenance status means it is worth a 
given value, according to a formula provided by that bank 

 
What are the privacy requirements? 

● An operator does not want to reveal the details of his operations and assets 
maintenance status to competition 

● The aircraft identity must be kept anonymous from all parties except the regulators and 
the technicians. 



 

● The technician’s identity must be kept anonymous from the regulator but if needed the 
operator can be asked to open the commitments for the regulator to validate the reports 

  
The proof predicate: “The operator is the owner of the aircraft, and knows some signed data 
attesting to the compliance with regulation rules: all the components are safe to fly”.  

- The plane is made up of the components x_1,...,x_n and for each of the 
components:  

- There is an legitimate attestation by an engineer who checked the 
component, and signed it's OK 

- The latest attestation by a technician is recent: the timestamp of the 
check was done before date D 

 
What is the public / private data: 

- Private: 
- Identity of the operator 
- Airplane record 
- Examination report of the technicians 
- Identity of the technician who signed the report 

- Public: 
- Commitment to airplane record 
-  

 
There is a record for the airplane that is committed to a public ledger, which includes miles 
flown.  
There are records that attest to repairs / inspections by mechanics that are also committed to 
the ledger. The decommitment is communicated to the operator. These records reference the 
identifier of the plane.  
 
Whenever the plane flies, the old plane record needs to be invalidated, and a new on committed 
with extra mileage.  
When a proof of “airworthiness” is required, the operator proves that for each part, the mileage 
is below what requires replacement, or that an engineer replaced the part (pointing to a record 
committed by a technician). 
 
At the gadget level:  

● The prover proves knowledge of a de-commitment of an airplane record (decommitment)  
● The record is in the set of records on the blockchain (set membership) 
● and knowledge of de-commitments for records for the parts (decommitment) that are 

also in the set of commitments on the ledger (set membership) 
● The airplane record is not revoked (i.e., it is the most recent one), (requires set 

non-membership for the set of published nullifiers) 
● The id of the plane noted in the parts is the same as the id of the plane in the plane 

record.  (equality)  



 

● The mileage of the plane is lower than the mileage needed to replace each part (range 
proofs) OTHERWISE  

● There exists a record (set membership)that says  that the part was replaced by a 
technician (validate signature of the technician (maybe use ring signature outside of 
ZK?)) 

Conclusions 
- The asset transfer and regulation can be used in the identity framework in a way that the 

additions complete the framework. 
- External oracles such as blockchain used for storing reference to data commitments 

References 
[FHEStandards] - 
http://homomorphicencryption.org/white_papers/applications_homomorphic_encryption_white_p
aper.pdf 
 
ZERO CASH - http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf 
Baby-zoe -  https://github.com/zcash-hackworks/babyzoe 
HAWK -  
ZKledger - https://eprint.iacr.org/2018/241.pdf 
 
Other identity references (ref [4] is mentioned in table on page 11): 

[1] Sovrin™: A Protocol and Token for Self-Sovereign Identity and Decentralized Trust,            
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf 
 

[2] D2.2 - Architecture for Attribute-based Credential Technologies - Final Version,           
https://abc4trust.eu/download/Deliverable_D2.2.pdf 
 

[3] Jan Camenisch, Manu Drijvers, Maria Dubovitskaya. Practical UC-Secure         
Delegatable Credentials with Attributes and Their Application to Blockchain. ACM Conference           
on Computer and Communications Security, 2017.  
 

[4] Foteini Baldimtsi and Jan Camenisch and Maria Dubovitskaya and Anna           
Lysyanskaya and Leonid Reyzin and Kai Samelin and Sophia Yakoubov. Accumulators with            
Applications to Anonymity-Preserving Revocation. IEEE European Symposium on Security and          
Privacy, EuroS&P 2017, IEEE.  
 

http://homomorphicencryption.org/white_papers/applications_homomorphic_encryption_white_paper.pdf
http://homomorphicencryption.org/white_papers/applications_homomorphic_encryption_white_paper.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
https://github.com/zcash-hackworks/babyzoe
https://eprint.iacr.org/2018/241.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://abc4trust.eu/download/Deliverable_D2.2.pdf
https://abc4trust.eu/download/Deliverable_D2.2.pdf
https://abc4trust.eu/download/Deliverable_D2.2.pdf
https://researcher.watson.ibm.com/researcher/view.php?person=zurich-JCA
https://researcher.watson.ibm.com/researcher/view.php?person=zurich-JCA
https://eprint.iacr.org/2017/043.pdf
https://eprint.iacr.org/2017/043.pdf
https://eprint.iacr.org/2017/043.pdf


 

[5] Camenisch, Jan; Kohlweiss, Markulf; Soriente, Claudio. Solving Revocation with 
Efficient Update of Anonymous Credentials. Security and Cryptography for Networks, 454--471, 
2010. 

External resources 
● ZKProof repository: https://github.com/zkpstandard/ 
● ZKProof Security Track and ZKProof Implementation Track documents on 

https://zkproof.org/documents.html 
● zkp.science - a curated and annotated list of references 
● Zcon0 ZKProof Workshop breakout notes: https://zkproof.org/zcon0_notes.pdf 

Acknowledges 
The workshops underlying these proceedings were sponsored by QED-it, Zcash Foundation, 
CheckPoint Institute for Information Security, Accenture, Danhua Capital, R3, Stratumn, 
Thundertoken, UR Ventures and Vmware. 

Change Log 
2018-08-01: Initial version. Summarizes the deliberations at 1st ZKProof Standards Workshop, 
and subsequent major contributions. 
 
 

https://github.com/zkpstandard/file_formats
https://zkproof.org/documents.html
https://zkp.science/
https://zkproof.org/zcon0_notes.pdf

